学报(中文)

环氧基形状记忆聚合物超弹-黏弹性本构及大应变率相关性

展开
  • 1. 上海交通大学 空间结构研究中心, 上海 200240; 2. 上海宇航系统工程研究所, 上海 201108
樊鹏玄(1996-),男,贵州省六盘水市人,博士生,主要从事智能材料与结构研究.

网络出版日期: 2019-10-11

基金资助

航天先进技术联合研究中心技术创新项目(USCAST2015-24,USCAST2016-21)

Hyper-Viscoelastic Model and Rate-Dependence in Large Strain Regime of Epoxy Shape Memory Polymer

Expand
  • 1. Space Structures Research Center, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Aerospace System Engineering Research Institute, Shanghai 201108, China

Online published: 2019-10-11

摘要

为探讨环氧基形状记忆聚合物(ESMP)在大应变状态下由材料超弹-黏弹性引起的应力软化-刚化效应及率相关特性,针对玻璃化转变温度(Tg)附近ESMP在发生大变形时表现出的应力软化和刚化效应进行力学本构方程及其试验研究.利用2阶多项式的超弹性本构方程替换广义Maxwell模型中的线弹性胡克定律以考虑大应变条件下材料的刚化效应,构造出超弹-黏弹性本构方程,并在真应变速率恒定的条件下推导出具有解析表达式、便于工程应用的材料参数测定公式;采用分段线性位移曲线逼近指数变化位移曲线,在温度高于Tg点的橡胶态及低于Tg点7℃的状态下,分组进行不同应变率的ESMP单轴拉伸试验;利用试验数据拟合得到推导本构方程的材料参数,并对其相应的拉伸试验进行数值模拟,试验结果与模拟结果较为吻合.结果表明:ESMP具备明显的率相关特性;随着应变速率的增大,ESMP的软化效应及刚化效应有所增强;应变速率大的切线模量总是大于应变速率小的切线模量.

本文引用格式

樊鹏玄,陈务军,胡建辉,赵兵,房光强,曹争利,彭福军 . 环氧基形状记忆聚合物超弹-黏弹性本构及大应变率相关性[J]. 上海交通大学学报, 2019 , 53(9) : 1017 -1022 . DOI: 10.16183/j.cnki.jsjtu.2019.09.001

Abstract

In order to investigate the stress softening-stiffening effect and the rate-dependent properties caused by the hyper-viscoelasticity of epoxy shape memory polymer (ESMP) in large strain regime, this work makes attempt to reveal the softening and stiffening effect of ESMP near and above glass transition temperature (Tg). Firstly, to account the stiffening effect in large strain, a hyper-viscoelastic model is established by substituting the second-order polynomial hyper-elastic model to the linear Hooke’s law in generalized Maxwell model. Meanwhile, the material constants calibration equations which are convenient for engineering application are derived for the case of constant true strain rate in analytical form. Then, the tensile tests in various strain rates are carried out at temperature above Tg in rubbery state and 7℃ blow Tg, where the exponential tensile displacement curve are approached by finite pieces of linear displacement curve. The material constants are calibrated by the tests respectively. The numerical simulation of each test is carried out using the corresponding parameters, where the simulation results are found to have high consistency with the test results. The results indicate that ESMP behaviors significant rate-dependence. Meanwhile, the softening effect and the stiffening effect increase with increasing strain rate; the tangential modulus in a large strain rate is always greater than the tangential modulus in a small strain rate.

参考文献

[1]ZHENG N, FANG G Q, CAO Z L, et al. High strain epoxy shape memory polymer[J]. Polymer Chemistry, 2015, 6(16): 3046-3053.
[2]吕海宝, 冷劲松, 杜善义. 形状记忆聚合物力学行为及其物理机制[J]. 固体力学学报, 2017, 38(1): 1-12.
LÜ Haibao, LENG Jinsong, DU Shanyi. Working mechanism for the mechanical behavior of shape memory polymer [J]. Chinese Journal of Solid Mechnics, 2017, 38(1): 1-12.
[3]JI S Z, WANG J, OLAH A, et al. Triple-shape-memory polymer films created by forced-assembly multilayer coextrusion[J]. Journal of Applied Polymer Science, 2017, 134(5): 44405
[4]MCCLUNG A J W, TANDON G P, BAUR J W. Effects of loading rate on the relaxation and recovery ability of an epoxy-based shape memory polymer[J]. Fluids, 2017, 2(2): 13.
[5]WANG Y K, TIAN W C, LIU X H, et al. Thermal sensitive shape memory behavior of epoxy composites reinforced with silicon carbide whiskers[J]. Applied Sciences, 2017, 7(1): 108.
[6]SANTIAGO D, SANJUAN-FABREGAT A, FERRANDO F, et al. Improving of mechanical and shape-memory properties in hyperbranched epoxy shape-memory polymers[J]. Shape Memory and Superelasticity, 2016, 2(3): 239-246.
[7]杜明昊. 形状记忆环氧树脂回复速率及其温度影响效应研究[D]. 北京: 北京交通大学, 2016.
DU Minghao. Investigation of temperature on the recovery rate of shape memory epoxy resin[D]. Beijing: Beijing Jiaotong University, 2016.
[8]谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
TAN Qiao. Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: Harbin Institute of Technology, 2015.
[9]FAN P X, CHEN W J, ZHAO B, et al. Formulation and numerical implementation of tensile shape memory process of shape memory polymers[J]. Polymer, 2018, 148: 370-381.
[10]BHATTACHARYYA A, TOBUSHI H. Analysis of the isothermal mechanical response of a shape memory polymer rheological model[J]. Polymer Engineering & Science, 2000, 40(12): 2498-2510.
[11]DIANI J, LIU Y P, GALL K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers[J]. Polymer Engineering & Science, 2006, 46(4): 486-492.
[12]CHEN Y C, LAGOUDAS D C. A constitutive theory for shape memory polymers. Part II. A linearized model for small deformations[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1766-1778.
[13]GU J P, SUN H Y, FANG C Q. A finite deformation constitutive model for thermally activated amorphous shape memory polymers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(12): 1530-1538.
[14]DIANI J, GILORMINI P, FRDY C, et al. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity[J]. International Journal of Solids and Structures, 2012, 49(5): 793-799.
[15]LUO L, WANG X X, JIA Y X, et al. Recovery performance and characteristics in shape memory effects of aliphatic polyether urethane[J]. Polymers for Advanced Technologies, 2013, 24(7): 679-684.
[16]GOH S M, CHARALAMBIDES M N, WILLIAMS J G. Determination of the constitutive constants of non-linear viscoelastic materials[J]. Mechanics of Time-Dependent Materials, 2004, 8(3): 255-268.
[17]黄辉祥, 汤文成, 吴斌, 等. 基于超弹性模型的牙周膜力学行为数值模拟[J]. 上海交通大学学报, 2014, 48(9): 1263-1267.
HUANG Huixiang, TANG Wencheng, WU Bin, et al. Numerical simulation of mechanical behaviors of periodontal ligament based on hyperelastic model[J]. Journal of Shanghai Jiao Tong University, 2014, 48(9): 1263-1267.
[18]BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. 2nd ed. Chichester, UK: John Wiley & Sons, 2013.
[19]DASSAULT SYSTEM. Abaqus 6.13 documentation [EB/OL]. (2013-04-02)[2018-03-23]. http://dsk.ippt.pan.pl/docs/abaqus/v6.13/index.html.
文章导航

/