通过对相变存储器中的读出电路进行改进,以提升存储器的读出速度;通过降低读出电路中灵敏放大器输出端电压摆幅,使得输出端电压提早到达交点,显著减小了读出时间;同时,基于中芯国际集成电路制造有限公司(SMIC)40nm 的互补金属氧化物半导体(CMOS)芯片制造工艺,利用8Mb相变存储器芯片对改进的新型高速读出电路进行验证,并对新型电路的数据读出正确性进行仿真分析.结果表明:在读Set态相变电阻(执行Set操作后的低电阻)时,新型电路与传统读出电路的读出时间均小于1ns;在读Reset态相变电阻(执行Reset操作后的高电阻)时,新型电路相比传统读出电路的读出速度提高了 35.0% 以上.同时,采用蒙特卡洛仿真方法所得Reset态相变电阻的读出结果表明:在最坏的情况下,相比传统读出电路的读出时间(111 ns),新型电路的读出时间仅为58ns;新型电路在最低Reset态相变电阻(RGST=500kΩ)时的读出正确率仍可达 98.8%.
The read circuit in phase-change random access memory (PCRAM) is improved to effectively accelerate the memory’s read speed. By reducing the output voltage swing of the sense amplifier in read circuit, output voltages can reach the intersection point earlier than before, so that can decrease the read access time. Based on SMIC 40nm complementary metal oxide semiconductor (CMOS) process, the novel high-speed sense amplifier is verified at an 8Mb PCRAM chip. The simulation results show that the read speeds of the novel circuit and the conventional circuit both are less than 1 ns when the Ge2Sb2Te5 (GST) resistance in set state (low resistance after set operation) is read. And the read speed can be accelerated more than 35.0% in the novel circuit compared to the conventional read circuit when the GST resistance in reset state (high resistance after set operation) is read. Monte Carlo simulation (the GST resistance in reset state) shows a 58ns worst read access time compared to the conventional circuit 111ns. And the read correctness of the novel read circuit was simulated in this paper. The simulation results show that the read validity can reach 98.8% in the worst reset resistance case (RGST=500kΩ).
[1]宋志棠. 相变存储器与应用基础 [M]. 北京: 科学出版社, 2013: 1-6.
SONG Zhitang. Phase change random access memory and its application [M]. Beijing: Science Press, 2013: 1-6.
[2]HOSOI Y, TAMAI Y, OHNISHI T, et al. High speed unipolar switching resistance RAM (RRAM) technology [C]//Electron Devices Meeting (IEDM). San Francisco, USA: IEEE, 2006: 1-4.
[3]HUAI Y M. Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects [J]. AAPPS Bulletin, 2008, 18(6): 33-40.
[4]CAI D L, CHEN H P, LI X, et al. Circuit design for 128Mb PCRAM based on 40 nm technology [C]//Non-Volatile Memory Technology Symposium (NVMTS). Shanghai: IEEE, 2011: 1-4.
[5]LEI Y, CHEN H P, WANG Q, et al. A Single-reference parasitic-matching sensing circuit for 3-D cross point PCM[EB/OL]. [2017-10-18]. https://www.researchgate.net/publication/318575036_A_Single-Reference_Parasitic-Matching_Sensing_Circuit_for_3-D_Cross_Point_PCM.
[6]CHANG M F, SHEU S S, LIN K F, et al. A high-speed 72-ns read-write random access 4-Mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes [J]. IEEE Journal of Solid-State Circuits, 2013, 48(3): 878-891.
[7]CHOI Y, SONG I, PARK M H, et al. A 20 nm 18 V 8 Gb PRAM with 40 MB/s program bandwidth [C]//Solid-State Circuits Conference Digest of Technical Papers (ISSCC). San Francisco, USA: IEEE, 2012: 46-48.
[8]FAN X, CHEN H P, WANG Q, et al. Optimization of periphery circuits in a 1 K-bit PCRAM chip for highly reliable write and read operations [J]. IEICE Electronics Express, 2014, 11(24): 20141071-20141079.
[9]BAZES M. Two novel fully complementary self-biased CMOS differential amplifiers [J]. IEEE Journal of Solid-State Circuits, 1991, 26(2): 165-168.
[10]LIU Y, SONG Z T, LIU B, et al. Optimization of 40-nm node epitaxial diode array for phase-change memory application [J]. IEEE Electron Device Letters, 2012, 33(8): 1192-1194.
[11]LEI Y, CHEN H P, LI X, et al. Enhanced read performance for phase change memory using a reference column [J]. IEICE Electronics Express, 2017, 14(5): 20170032-20170042.
[12]LUNG H L, MILLER C P, CHEN C J, et al. A double-data-rate 2 (DDR2) interface phase-change memory with 533 MB/s read-write data rate and 37.5 ns access latency for memory-type storage class me-mory applications[C]//International Memory Workshop (IMW). Paris, France: IEEE, 2016, 8: 1-5.
[13]HANZAWA S, KITAI N, OSADA K, et al. A 512kB embedded phase change memory with 416 kB/s write throughput at 100μA cell write current[C]//International Solid-State Circuits Conference (ISSCC). San Francisco, USA: IEEE, 2017: 474-616.