深海采矿一般采用水力集矿方式将海床表层的矿石颗粒采集到集矿机内,圆球矿石颗粒在集矿流场中的受力特性研究是集矿系统的设计基础.通过在实验室设计并搭建水力集矿试验系统,研究不同集矿头离底高度与矿粒直径比(h/d)、集矿头与矿粒底部端点之间的偏转角度(θ)、不同集矿头拖曳速度(vt)对球形矿粒在集矿流场中的垂向受力系数(Cvs)及径向受力系数(Crs)的影响.研究结果表明:Cvs随h/d的增加呈显著的指数关系减小;垂向力预测公式预报的矿粒垂向受力误差小于10%;当θ=20° 时,Cvs达到快速衰减转折点;Cvs和Crs的最大值随着vt的增加有增大的趋势,且当θ=35° 或θ=40° 时,Crs达到最大值.研究结果可为深海采矿水力集矿系统的设计及矿粒精准开采的实施提供一定的参考依据.
Hydraulic collecting is a typical way to collect ores in deep sea mining. The study on mechanical characteristics of spherical particles in collecting flow field is the basis of collecting system design. The experiment system of hydraulic collecting is set up in the laboratory to study the impact of the ratio of bottom clearance to diameter of the particle (h/d), the angle between pipe inlet end face and the bottom of particle (θ), the towed speed of the suction pipe (vt) on vertical suction force coefficient (Cvs) and radius suction force coefficient (Crs). The results show that Cvs decreases exponentially with the increase of h/d; the vertical force predicting model of particles is established with the maximum error less than 10%; θ=20° is the point at which the fast fading of Cvs begins; the maximum of Crs and Cvs tend to increase slightly with the increase of vt, and Crs always reaches the maximum at θ=35° or θ=40°. The results of this article can provide reference for the design of hydraulic collecting system and refinement of collecting process.
[1]CHUNG J S. Deep-ocean mining technology: Development II [C]//Proceedings of the 6th ISOPE Ocean Mining Symposium. Changsha, China: ISOPE, 2005: 1-6.
[2]HEIN J R, KOSCHINSKY A. Deep-ocean ferromanganese crusts and nodules[C]//Treatise on Geochemistry. USA: Elsevier, 2014: 273-291.
[3]HERROUIN G, LENOBLE J P, CHARLES C, et al. A manganese nodule industrial venture would be profitable: Summary of a 4-year study in France[C]//Offshore Technology Conference. Texas, USA: OTC, 1989: 321-332.
[4]BOETIUS A, HAECKEL M. Mind the seafloor[J]. Science, 2018, 359(6371): 34-36.
[5]李向阳. 我国深海多金属结核采矿试验之初论[J]. 海洋开发与管理, 2017, 34(1): 63-66.
LI Xiangyang. Preliminary discussion on Chinese deep-sea polymetalllic nodules pilot mining test[J]. Ocean Development and Management, 2017, 34(1): 63-66.
[6]赵松年, 刘峰. 德国深海采矿技术的研究[J]. 金属矿山, 1995(6): 14-17.
ZHAO Songnian, LIU Feng. Study of deep-sea mining technique in Germany[J]. Metal Mine, 1995(6): 14-17.
[7]丁六怀, 高宇清. 深海采矿集矿机的研究与开发[J]. 矿业研究与开发, 2006, 26(z1): 52-56.
DING Liuhuai, GAO Yuqing. Research and development of deep-sea mining collector[J]. Mining Research and Development, 2006, 26(z1): 52-56.
[8]YANG N, TANG H P. Several considerations of the design of the hydraulic pick-up device[C]//Proceedings of the 5th ISOPE Ocean Mining Symposium. Tsukuba, Japan: ISOPE, 2003: 119-122.
[9]HONG S, CHOI J S, KIM J H, et al. Experimental study on hydraulic performance of hybrid pick-up device of manganese nodule collector [C]//Proceedings of the 3rd ISOPE Ocean Mining Symposium. Goa, India: ISOPE, 1999: 69-77.
[10]ZHAO G C, XIAO L F, LU H N, et al. A case study of hydraulic collecting a single spherical particle [C]//The 27th International Ocean and Polar Engineering Conference. California, USA: ISOPE, 2017: 30-38.
[11]刘勇, 陈炉云. 涡激振动对管道液固两相流流场的影响[J]. 上海交通大学学报, 2017, 51(4): 485-489.
LIU Yong, CHEN Luyun. Influence of vortex induced vibration on the liquid-solid two-phase flow in pipeline[J]. Journal of Shanghai Jiao Tong University, 2017, 51(4): 485-489.
[12]LIM S J, KIM J W, JUNG S T, et al. Deep seawater flow characteristics around the manganese nodule collecting device[C]//8th International Conference on Asian and Pacific Coasts. Chennai, India: APAC, 2015: 544-551.
[13]刘少军, 刘畅, 戴瑜. 深海采矿装备研发的现状与进展[J]. 机械工程学报, 2014, 50(2): 8-18.
LIU Shaojun, LIU Chang, DAI Yu. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering, 2014, 50(2): 8-18.
[14]简曲, 王明和. 深海采矿集矿机的设计[J]. 矿业研究与开发, 1998, 18(1): 33-36.
JIAN Qu, WANG Minghe. Design of nodule collector for deep ocean mining[J]. Mining Research and Development, 1998, 18(1): 33-36.
[15]ATMANAND M A, SHAJAHAN M A, DEEPAK C R, et al. Instrumentation for underwater crawler for mining in shallow waters [DB/OL]. [2018-08-25]. https://www.researchgate.net/publication/228537704_Instrumentation_for_under_water_crawler_for_mining_in_shallow_water.
[16]DEEPAK C R, RAMJI S, RAMESH N R, et al. Development and testing of underwater mining systems for long term operations using flexible riser concept [C]//Proceedings of 7th ISOPE Ocean Mining Symposium. Lisbon, Portugal: ISOPE, 2007: 166-170.