学报(中文)

双应力变量的饱和介质非线性体积本构关系

展开
  • 浙江大学 建筑工程学院,杭州 310058
胡亚元(1968-),男,浙江省兰溪市人,副教授,主要从事地基加固和岩土的本构关系研究.电话(Tel.):13588410150; E-mail:huyayuan@zju.edu.cn.

网络出版日期: 2019-08-02

基金资助

国家自然科学基金(51178419),广东省中科化灌工程与材料院士工作站科研基金(2016GZZ07)资助项目

Nonlinear Volumetric Constitutive Relations of Saturated Media in Terms of Double-Stress Variables

Expand
  • College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

Online published: 2019-08-02

摘要

为获得考虑组分基质变形的饱和多孔介质体积本构关系,根据混合物理论,把饱和多孔介质的固相体应变分为固相体积分数应变与固相基质体应变之和.通过推导和分析体积变形功守恒方程,在小应变条件下揭示了Terzaghi有效应力唯一决定固相体积分数应变和固相基质压力唯一决定固相基质体应变的变形规律,并据此提出双应力原理:Terzaghi有效应力与固相基质压力共同决定饱和多孔介质的固相体应变.当忽略固相基质压缩性时,双应力原理退化为有效应力原理.根据上述理论研究成果,结合Lade和De Boer模型试验数据建立了饱和多孔介质非线性体积本构关系式,以验证上述理论的可行性及正确性.最后,基于双应力变量模型讨论了Biot系数、孔压系数和孔隙比随Terzaghi有效应力的变化规律.

本文引用格式

胡亚元,王超 . 双应力变量的饱和介质非线性体积本构关系[J]. 上海交通大学学报, 2019 , 53(7) : 797 -804 . DOI: 10.16183/j.cnki.jsjtu.2019.07.005

Abstract

In order to obtain the volumetric constitutive relations of saturated porous media considering the deformation of component matrices, the volume strain of solid phase in saturated porous media was divided into solid volume fraction strain and solid matrix volume strain on the basis of mixture theory. By means of derivation and analysis of the conservation equation of volume deformation work, the deformation rules were revealed under small strain condition that Terzaghi effective stress determines uniquely the solid volume fraction strain and the solid matrix pressure determines uniquely the solid matrix volume strain, respectively. The double-stress principle was accordingly proposed, that was, Terzaghi effective stress and solid matrix pressure determined the volume deformation of solid phase in saturated porous media together. The double-stress principle degenerated into the effective stress principle when the compressibility of the solid matrix was neglected. On the basis of the above theoretical study results and the data of Lade and de Boer model test, the expression of nonlinear volumetric constitutive relations of saturated porous media was achieved in order to verify the feasibility and correctness of the above theory. Finally, based on the double stress variables model, the variation laws of Biot coefficient, pore pressure coefficient and void ratio with Terzaghi effective stress were discussed.

参考文献

[1]ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1411-1478. [2]陈益峰, 胡冉, 周创兵, 等. 热-水-力耦合作用下结晶岩渗透特性演化模型[J]. 岩石力学与工程学报, 2013, 32(11): 2185-2195. CHEN Yifeng, HU Ran, ZHOU Chuangbing, et al. A permeability evolution model for crystalline rocks subjected to coupled thermo-hydro-mechanical loading [J]. Chinese Journal of Rock Mechanics and Enginee-ring, 2013, 32(11): 2185-2195. [3]谭贤君, 陈卫忠, 伍国军, 等. 低温冻融条件下岩体温度-渗流-应力-损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报, 2013, 32(2): 239-250. TAN Xianjun, CHEN Weizhong, WU Guojun, et al. Study of thermo-hydro-mechanical-damage(THMD) coupled model in the condition of freeze-thaw cycles and its application to cold region tunnels [J]. Chinese Journal of Rock Mechanics and Enginee-ring, 2013, 32(2): 239-250. [4]KANG Y S, LIU Q S, HUANG S B. A fully coupled thermo-hydro-mechanical model for rock mass under freezing/thawing condition [J]. Cold Regions Science and Technology, 2013, 95(11): 19-26. [5]SAINOKI A, MITRI H S. Numerical simulation of rock mass vibrations induced by nearby production blast [J]. Canadian Geotechnical Journal, 2014, 51(11): 1-10. [6]贾善坡, 于洪丹, 伍国军, 等. 泥岩非线性蠕变损伤-渗透愈合耦合模型及其应用[J]. 应用基础与工程科学学报, 2016, 24(2): 364-377. JIA Shanpo, YU Hongdan, WU Guojun, et al. New coupled model on nonlinear creep damage and permeability healing of mudstone and its application [J]. Journal of Basic Science and Engineering, 2016, 24(2): 364-377. [7]PANTELEEV I A, KOSINA A A, PLEKHOV O A. Numerical simulation of artificial ground freezing in a fluid-saturated rock mass with account for filtration and mechanical processes [J]. Science in Cold and Arid Regions, 2017, 9(4): 363-377. [8]彭守建, 谭虎, 许江, 等. 渗透水压作用下完整砂岩剪切-渗流耦合试验研究[J]. 岩土力学, 2017, 38(8): 2213-2220. PENG Shoujian, TAN Hu, XU Jiang, et al. Experimental study on shear-seepage of coupled properties for complete sandstone under the action of seepage water pressure [J]. Rock and Soil Mechanics, 2017, 38(8): 2213-2220. [9]ZHANG K, ZHOU H, SHAO J F. An experimental investigation and an elastoplastic constitutive model for a porous rock [J]. Rock Mechanics and Rock Engineering, 2013, 46: 1499-1511. [10]赵阳升.多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010: 171-310. ZHAO Yangsheng. Multi-field coupling in porous media and its engineering response [M]. Beijing: Science Press, 2010: 171-310. [11]席道瑛, 徐松林.岩石物理与本构理论[M]. 合肥: 中国科学技术大学出版社, 2016: 484-571. XI Daoying, XU Songlin. Rock physics and constitutive theory [M]. Hefei: Press of University of Science and Technology of China, 2016: 484-571. [12]BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua [J]. International Journal of Solids and Structures, 2006, 43: 1764-1786. [13]LADE P V, DE BOER R. The concept of effective stress for soil, concrete and rock [J]. Géotechnique, 1997, 47(1): 61-78. [14]TERZAGHI K. The shearing resistance of saturated soils and the angle between the planes of shear[C]//Proceedings of the 1st International Conference of Soil Mechanics and Foundation Engineering. Cambridge, London: Harvard University Press, 1936: 54-56. [15]BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. [16]SKEMPTON A W. Effective stress in soils, concrete and rocks, pore pressure and suction in soils[C]//Proceedings of the International Conference of Soil Mechanics and Foundation Engineering. London: Butterworths, 1961: 4-25. [17]DE BOER R. Highlights in the historical development of the porous media: Toward a consistent macroscopic theory [J]. Applied Mechanics Reviews, 1996, 49(4): 201-262. [18]SCHREFLER B A. Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions [J]. Applied Mechanics Reviews, 2002, 55(4): 351-388. [19]胡亚元.饱和多孔介质的超粘弹性本构理论研究[J].应用数学和力学, 2016, 37(6): 584-598. HU Yayuan. Study on the super viscoelastic constitutive theory for saturated porous media [J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. [20]邸元, 康志江, 代亚飞, 等. 复杂多孔介质多重介质模型的表征单元体[J]. 工程力学, 2015, 32(12): 33-39. DI Yuan, KANG Zhijiang, DAI Yafei, et al. Representative elementary volume of the multiple-continuum model for complex porous media [J]. Engineering Mechanics, 2015, 32(12): 33-39. [21]黄筑平. 连续介质力学基础. [M]. 2版. 北京: 高等教育出版社, 2012: 101-104. HUANG Zhuping. Fundamentals of continuum mechanics [M]. 2nd ed. Beijing: Higher Education Press, 2012: 101-104. [22]MEIDANI M, CHANG C S, DENG Y B. On active and inactive voids and a compression model for granular soils [J]. Engineering Geology, 2017, 222: 156-167. [23]刘鹏, 丁文其. 双对数压缩曲线在海积软土本构中的应用[J]. 上海交通大学学报, 2016, 50(11): 1706-1711. LIU Peng, DING Wenqi. Application of bi-logarithmic compression curves [J]. Journal of Shanghai Jiao Tong University, 2016, 50 (11): 1706-1711. [24]龚晓南, 谢康和. 土力学[M]. 北京: 中国建筑工业出版社, 2014: 87. GONG Xiaonan, XIE Kanghe. Soil mechanics [M]. Beijing: China Architecture and Building Press, 2014: 87. [25]陈晶晶, 雷国辉. 决定饱和岩土材料变形的有效应力及孔压系数[J]. 岩土力学, 2012, 33(12): 3696-3703. CHEN Jingjing, LEI Guohui. Effective stress and pore pressure coefficient controlling the deformation of saturated geomaterials [J]. Rock and Soil Mecha-nics, 2012, 33(12): 3696-3703. [26]商翔宇, 郑秀忠, 周国庆. 高压下饱和黏土B系数研究[J]. 岩土工程学报, 2015, 37(3): 532-536. SHANG Xiangyu, ZHENG Xiuzhong, ZHOU Guoqing. Coefficient B of saturated clay under high pre-ssure [J]. Chinese Journal of Geotechnical Enginee-ring, 2015, 37 (3): 532-536. [27]GU X Q, YANG J, HUANG M S. Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity [J]. Journal of Central South University, 2013, 20(7): 2001-2007. [28]FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated soil mechanics in engineering practice [M]. New York: John Wiley & Sons, 2012: 783-808.
文章导航

/