学报(中文)

考虑能耗和准时的混合流水线多目标调度

展开
  • 同济大学 机械与能源工程学院,上海 201804
周炳海(1965-),男,浙江省浦江县人,教授,研究方向为离散制造系统的调度、建模与仿真. E-mail:bhzhou@tongji.edu.cn.

网络出版日期: 2019-08-02

基金资助

国家自然科学基金资助项目(71471135)

Multi-Objective Hybrid Flow-Shop Scheduling Problem Considering Energy Consumption and On-Time Delivery

Expand
  • School of Mechanical Engineering, Tongji University, Shanghai 201804, China

Online published: 2019-08-02

摘要

针对加工时间和交货期模糊的混合流水线,考虑阶段内并行机互不相关、换模时间与工件加工次序相关等约束,面向降低生产能源消耗和保证准时交货的双目标调度问题,提出一种改进型差分进化算法.首先,以最小化系统能耗和准时交货惩罚为优化目标建立双目标优化数学模型;在此基础上,使用NEH(Nawaz, Enscore, Ham)方法获得优质初始解,并利用优质解挑战机制进行有效的邻域挖掘;同时,引入混沌搜索策略以保证算法的全局搜索能力;最后,将数值实验与有代表性的算法的计算结果进行对比,以验证所提算法的可行性与有效性.

本文引用格式

周炳海,刘文龙 . 考虑能耗和准时的混合流水线多目标调度[J]. 上海交通大学学报, 2019 , 53(7) : 773 -779 . DOI: 10.16183/j.cnki.jsjtu.2019.07.002

Abstract

To guarantee on-time delivery of the hybrid flow-shop system and reduce energy consumption at the meantime, a modified differential evolution algorithm is proposed for the multi-objective hybrid flow-shop scheduling problem with fuzzy processing time and due date, considering in-stage unrelated parallel machines and sequence-dependent setup time. First, a bi-objective mathematical model is established to minimize on-time delivery penalty and energy consumption. Then, a modified algorithm is developed which efficiently generates high-quality initial solutions with NEH (Nanaz, Enscore, Ham)-based heuristic method, thoroughly exploits neighborhoods with the elite individual challenging mechanism. The modified algorithm highly improves the exploration ability with chaotic search strategy. Finally, the results of the comparison with existing typical algorithms and numerical experiment demonstrate that the proposed algorithm is feasible and effective.

参考文献

[1]王凌, 周刚, 许烨, 等. 求解不相关并行机混合流水线调度问题的人工蜂群算法[J]. 控制理论与应用, 2012, 29(12): 1551-1557. WANG Ling, ZHOU Gang, XU Ye, et al. An artificial bee colony algorithm for solving hybrid flow-shop scheduling problem with unrelated parallel machines [J]. Control Theory & Applications, 2012, 29(12): 1551-1557. [2]ABDULLAH S, ABDOLRAZZAGH-NEZHAD M. Fuzzy job-shop scheduling problems: A review[J]. Information Sciences, 2014, 278: 380-407. [3]HONG T P, WANG T T. A heuristic palmer-based fuzzy flexible flow-shop scheduling algorithm[C]//Proceedings of 8th International Fuzzy Systems Conference. Seoul, South Korea: IEEE, 1999: 1493-1497. [4]HONG T P, WANG T T, WANG S L. A palmer-based continuous fuzzy flexible flow-shop scheduling algorithm[J]. Soft Computing, 2001, 5(6): 426-433. [5]PINEDO M, HADAVI K. Operations research proceedings 1991[M]. Berlin: Springer, 1992: 35-42. [6]ZHOU B H, SHEN C Y. Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration[J]. Journal of Cleaner Production, 2018, 192: 293-305. [7]周炳海, 苏谊. 基于可变缓冲区存储量的串行生产线节能分析[J]. 哈尔滨工程大学学报, 2016, 37(6): 832-836. ZHOU Binghai, SU Yi. Energy-saving analysis of serial production lines based on the changeable buffers’ storage[J]. Journal of Harbin Engineering University, 2016, 37(6): 832-836. [8]ZHANG R, CHIONG R. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption [J]. Journal of Cleaner Production, 2016, 112: 3361-3375. [9]DAI M, TANG D B, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5): 418-429. [10]LUO H, DU B, HUANG G Q, et al. Hybrid flow shop scheduling considering machine electricity consumption cost[J]. International Journal of Production Economics, 2013, 146(2): 423-439. [11]STORN R, PRICE K. Differential evolution——A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. [12]FU C M, JIANG C, CHEN G S, et al. An adaptive differential evolution algorithm with an aging leader and challengers mechanism[J]. Applied Soft Computing, 2017, 57: 60-73. [13]NAWAZ M, ENSCORE E E, HAM I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95. [14]TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence [C]//Computational Intelligence for Modelling, Control and Automation/International Conference on Intelligent Agents, Web Technologies and International Commerce. Vienna, Austria: IEEE, 2005: 695-701.
文章导航

/