为解决装配式水泥混凝土道面应用中灌浆层的优选问题,设计了灌浆种类、板底粗糙程度、灌浆厚度和基层结构四因素三水平的正交试验方案,开展了竖向静态和疲劳加载试验以及侧向加载试验.结果表明:板底粗糙程度对灌浆层与面层粘结性能影响最大,灌浆种类对灌浆层与基层粘结性能以及道面结构承载性能影响最大;经疲劳加载后,面层的中性面会出现不同幅度的上移,挠度和压力与疲劳加载次数的关系曲线呈现出剧烈变化、线性变化和稳定3个阶段;侧向荷载作用下,高强无收缩灌浆料(CGM)与基层的粘结性能最好,侧向荷载与上层结构位移满足二次多项式关系.当灌浆材料为CGM、板底光滑、灌浆厚度为 2.0cm、基层结构为12%水泥稳定土时,道面灌浆层的粘结性最好.
In order to solve the optimization problem of grouting layer in the application of prefabricated cement concrete pavement, an orthogonal test scheme with four factors (grouting type, bottom roughness, grouting thickness and base structure) and three levels was designed. The vertical static and fatigue loading tests and lateral loading test were carried out. Results show that the bottom roughness has the greatest influence on the bonding characteristics between the grouting layer and the surface layer. The grouting type has the greatest influence on the bonding characteristics between the grouting layer and the base layer, as well as the bearing capacity of pavement structure. After fatigue loading, the neutral plane of the surface layer exhibits upper shifts in different degrees. The relationship between deflection, pressure and fatigue loading times has three stages: dramatic change, linear change and stable stage. Under lateral load, high strength non-shrink grouting material (CGM) has the best bond with the base. The relationship between lateral load and superstructure displacement meet the quadratic polynomial pattern. When the grouting material is CGM, the slab bottom is smooth, the grouting thickness is 2.0cm, the base structure is 12% cement stabilized soil, the pavement grouting layer achieves the best bonding characteristics.
[1]翁兴中, 陈卫星, 殷民动. 机场规划建设与场道维修技术[M]. 西安: 陕西科学技术出版社, 2011.
WENG Xingzhong, CHEN Weixing, YIN Mindong. The construction of airport and runway repair technology[M]. Xi’an: Shaanxi Science and Technology Press, 2011.
[2]ASHTIANI R, JACKSON C, SAEED A, et al. Precast concrete panels for contingency rigid airfield pavement repairs[R]. Florida: US Air Force Research Laboratory, 2010.
[3]ZHANG J, WENG X Z, LIU J Z, et al. Anti-slip and wear resistance performance of three novel coatings as surface course of airstrip[J]. International Journal of Pavement Engineering, 2018, 19(4): 370-378.
[4]TAYABJI S, YE D, N BUCH. Modular pavement technology final report: Final report of project R05[R]. Washington, DC: Strategic Highway Research Program, 2012.
[5]PRIDDY L P, BLY P G, JACKSON C J, et al. Full-scale field testing of precast portland cement concrete panel airfield pavement repairs[J]. International Journal of Pavement Engineering, 2014, 15(9): 840-853.
[6]DOYLE J D, PRIDDY L P, FLINTSCH G W, et al. Three-dimensional modelling of precast concrete pavement repair joints[J]. Magazine of Concrete Research, 2015, 67(10): 513-522.
[7]周泽民. 装配式水泥混凝土路面的施工[J]. 中南公路工程, 1991, 58(3): 20-23.
ZHOU Zemin. Constructions on fabricated cement concrete pavement[J]. Central South Highway Engineering, 1991, 58(3): 20-23.
[8]田志昌, 孟亚楠, 韩育民, 等. 装配式水泥混凝土路面板荷载应力分析与接缝优化[J]. 山东农业大学学报(自然科学版), 2016, 47(5): 753-759.
TIAN Zhichang, MENG Yanan, HAN Yumin, et al. Analysis on load stress of fabricated cement concrete pavement slabs and joint optimization[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2016, 47(5): 753-759.
[9]王军强, 李清. 装配式混凝土结构灌浆材料的性能试验与施工技术[J]. 混凝土, 2013(10): 142-144.
WANG Junqiang, LI Qing. Performance test and the construction technology of cementitious grouting material used in precast reinforced concrete structure[J]. Concrete, 2013(10): 142-144.
[10]HONG C Y, YIN J H, PEI H F. Comparative study on pullout behaviour of pressure grouted soil nails from field and laboratory tests[J]. Journal of Central South University, 2013, 20(8): 2285-2292.
[11]钟正强, 喻奕, 刘波. 胶层厚度对预应力 CFRP 加固混凝土梁粘结应力的影响试验[J]. 中国公路学报, 2014, 27(11): 55-62.
ZHONG Zhengqiang, YU Yi, LIU Bo. Experimental study on influence of adhesive layer thickness on bond stress of concrete beams strengthened with prestressed CFRP[J]. China Journal of Highway and Transport, 2014, 27(11): 55-62.
[12]WANG S, CHEN L, HUANG R, et al. Long-term hardening characteristics of prestressed anchorage grout[J]. Journal of Mountain Science, 2012, 9(6): 752-759.
[13]李锐, 郑毅敏, 赵勇. 配置 500MPa 钢筋套筒灌浆连接预制混凝土柱抗震性能试验研究[J]. 建筑结构学报, 2016, 37(5): 255-263.
LI Rui, ZHENG Yimin, ZHAO Yong. Experimental research on seismic performance of precast concrete columns with 500MPa reinforcements splicing by grout-filled coupling sleeves[J]. Journal of Building Structures, 2016, 37(5): 255-263.
[14]钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548.
[15]YAN X, WENG X, KOU Y. Influence of fiber grid on interlayer bond property of airport double-layer pavement[J]. Journal of Reinforced Plastics & Composites, 2014, 33(1): 101-111.
[16]YANG B, WENG X. The influence on the durability of semi-flexible airport pavement materials to cyclic wheel load test[J]. Construction and Building Materials, 2015, 98: 171-175.
[17]中华人民共和国交通部.公路工程水泥及水泥混凝土试验规程: JTG E30-2005[S]. 北京: 人民交通出版社, 2005.
Ministry of Transport of the People’s Republic of China. Test methods of cement and concrete for highway engineering: JTG E30-2005[S]. Beijing: China Communications Press, 2005.