学报(中文)

一种不可压缩二维流动的显式逐次超松弛并行算法

展开
  • 上海交通大学 海洋工程国家重点实验室; 高新船舶与深海开发装备协同创新中心; 船舶海洋与建筑工程学院, 上海 200240
张晓慧(1992-),女,陕西省渭南市人,博士生,研究方向为船舶耐波性的数值模拟.

网络出版日期: 2019-07-23

基金资助

国家自然科学基金面上项目(51279105,BC0100097)

An Explicit Parallel Successive Over-Relaxation Method for Simulation of 2-Dimensional Incompressible Flows

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration; School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-07-23

摘要

提出一种有限体积显式逐次超松弛并行(FV-pSOR)算法,以提高逐次超松弛(SOR)算法求解不可压缩二维流动控制方程组离散所形成的代数方程组的效率.基于区域分解的思想,将计算域分割成4个子域,构造了离散的一般性代数方程组的显式迭代公式并规划了迭代路径;然后,通过数值求解典型二维方腔流,验证了FV-pSOR算法的有效性.结果表明:与SOR算法相比,所提FV-pSOR算法在计算精度相当的前提下的计算效率提高了数倍.

本文引用格式

张晓慧,柏君励,顾解忡,马宁 . 一种不可压缩二维流动的显式逐次超松弛并行算法[J]. 上海交通大学学报, 2019 , 53(6) : 681 -687 . DOI: 10.16183/j.cnki.jsjtu.2019.06.007

Abstract

An explicit finite volume parallel successive over-relaxation (FV-pSOR) iterative method is proposed to improve the efficiency of successive over-relaxation (SOR) iterative method in solving the algebraic equations obtained by discretizing the governing equations of 2-dimensional incompressible flows. Based on the domain decomposition technique, computation domain is separated into four sub-domains, and group explicit SOR schemes are constructed for the algebraic equations with general coefficients in flow problems. Furthermore, the iterative route has been discussed in detail. To confirm availability of this algorithm, a series of calculations for a typical lid-driven cavity flow are performed. It demonstrates that comparing to the SOR iterative method, current FV-pSOR iterative method improves the computation efficiency several folds while the accuracy is not degraded.

参考文献

[1]GUO Z, MA Q, HU X. Seakeeping analysis of a wave-piercing catamaran using URANS-based method[J]. International Journal of Offshore & Polar Engineering, 2016, 26(1): 48-56. [2]TEZDOGAN T, INCECIK A, TURAN O. Full-scale unsteady RANS simulations of vertical ship motions in shallow water[J]. Ocean Engineering, 2016, 123: 131-145. [3]ZHOU Y H, MA N, SHI X, et al. Direct calculation method of roll damping based on three-dimensional CFD approach[J]. Journal of Hydrodynamics, 2015, 27(2): 176-186. [4]AVALOS G O G, WANDERLEY J B V, FERNANDES A C, et al. Roll damping decay of a FPSO with bilge keel[J]. Ocean Engineering, 2014, 87: 111-120. [5]KEYES D E, GROPP W D. A comparison of domain decomposition techniques for elliptic partial differen-tial equations and their parallel implementation [J]. SIAM Journal on Scientific and Statistical Computing, 1987, 8(2): 166-202. [6]WALKER E, NIKITOPOULOS D, TROMEUR-DERVOUT D. Parallel solution methods for Poisson-like equations in two-phase flows[J]. Computers & Fluids, 2013, 80: 152-157. [7]NOTAY Y, NAPOV A. A massively parallel solver for discrete Poisson-like problems[J]. Journal of Computational Physics, 2015, 281: 237-250. [8]XU K L, YANG P, JIANG Y L. Structure-pre-serving model reduction of second-order systems by Krylov subspace methods[J]. Journal of Applied Mathematics & Computing, 2017(5): 1-18. [9]LEMMER A, HILFER R. Parallel domain decomposition method with non-blocking communication for flow through porous media[J]. Journal of Computational Physics, 2015, 281: 970-981. [10]许秋燕, 张现强. 求解泊松方程的多子域超松弛并行迭代算法[J]. 宁夏大学学报(自然科学版), 2013, 34(2): 97-100. XU Qiuyan, ZHANG Xianqiang. A multi-subdomain parallel super over relaxation iterative algorithm for solving Poisson equation[J]. Journal of Ningxia University (Natural Science Edition), 2013, 34(2): 97-100. [11]BAI J L, MA N, GU X C. Fourth order compact finite volume scheme for water wave simulation[C]//The 18th Academic Symposium on China’s Marine Engineering. Zhoushan, China: Chinese Society of Oceanography, 2017: 101-106. [12]GHIA U, GHIA K N, SHIN C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of Computational Physics, 1982, 48(3): 387-411.
文章导航

/