学报(中文)

基于传感探测系统的多自治水下机器人编队协调控制

展开
  • 上海交通大学 海洋智能装备与系统教育部重点实验室; 海洋工程国家重点实验室, 上海 200240
庞师坤(1987-),男,安徽省宿州市人,博士生,主要从事水下机器人控制研究.E-mail: pangsk@sjtu.edu.cn.

网络出版日期: 2019-05-28

基金资助

上海交通大学海洋工程国家重点实验室自主研究课题(GKZD01006)

Formation Control of Multiple Autonomous Underwater Vehicles Based on Sensor Measuring System

Expand
  • MOE Key Laboratory of Marine Intelligent Equipment and System; State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-05-28

摘要

针对自治水下机器人(AUV)编队协调控制问题,研究了基于传感探测系统的主从式编队协调控制方法.该方法能够避免AUV编队之间依靠水声通信而造成的通信延迟和数据丢失的问题,提高编队控制的可靠性以及生存能力.首先根据领航者位置信息和期望的编队队形得到跟随者的参考路径,跟随者可以实时测得领航者的距离和航向信息并与参考路径相对比.其次为了使跟随者轨迹在短时间内收敛于参考路径从而得到期望的队形,利用Lyapunov函数设计了反演控制器.最后对设计进行了编队控制的仿真.结果表明,AUV编队队形保持良好,所采用的方法具有很好的可行性.

本文引用格式

庞师坤,王健,易宏,梁晓锋 . 基于传感探测系统的多自治水下机器人编队协调控制[J]. 上海交通大学学报, 2019 , 53(5) : 549 -555 . DOI: 10.16183/j.cnki.jsjtu.2019.05.006

Abstract

Autonomous underwater vehicle (AUV) formation is of significance to the efficiency and viability of improving underwater operating. Leader-follower formation of AUVs is researched based on sensor measuring system aimed at the coordination control of AUV formation. The problems of communication delay and data lost caused by underwater acoustic communication can be avoided, and the reliability and survivability of the formation system can be improved. Firstly, the reference route of follower AUVs is generated according to the position information of leader AUV and the desired formation structure. The followers can measure the range and bear information of the leader, and then compare the date with the reference route. A back-stepping controller based on Lyapunov function is designed to make sure that the orbit of followers could converge to the reference trajectory in a short time and the desired formation can be achieved. The simulation analysis of formation control is conducted. The results show that the AUVs can preserve the designed formation, and the proposed method has a high feasibility.

参考文献

[1]崔荣鑫, 徐德民, 严卫生. 仅利用位置信息的自主水下航行器主从式编队控制方法[J]. 兵工学报, 2008, 29(8): 980-984. CUI Rongxin, XU Demin, YAN Weisheng. Leader-follower formation control of autonomous underwater vehicles using position information only[J]. Acta Armamentarii, 2008, 29(8): 980-984. [2]朱大奇, 杜青. 基于领航位置信息的 AUV 三维编队控制方法[J]. 系统仿真技术, 2013: 9(3): 193-198. ZHU Daqi, DU Qing. Three-dimensional formation control method for AUV based on pilot location information[J]. System Simulation Technology, 2013: 9(3): 193-198. [3]雷艳敏, 冯志彬, 宋继红. 基于行为的多机器人编队控制的仿真研究[J]. 长春大学学报, 2008, 18(4): 40-44. LEI Yanmin, FENG Zhibin, SONG Jihong. The simulation study on formation control of multi-robot system based on behaviors[J]. Journal of Changchun University, 2008, 18(4): 40-44. [4]曾志峰, 汤一华, 陈士橹, 等. 基于行为的太阳帆群编队方法[J]. 西北工业大学学报, 2012, 30(1): 44-49. ZENG Zhifeng, TANG Yihua, CHEN Shilu, et al. A better formation planning algorithm of solar sail swarm based on behavior[J]. Journal of Northwestern Polytechnical University, 2012, 30(1): 44-49. [5]潘无为, 姜大鹏, 庞永杰, 等. 人工势场和虚拟结构相结合的多水下机器人编队控制[J]. 兵工学报, 2017, 38(2): 326-334. PAN Wuwei, JIANG Dapeng, PANG Yongjie, et al. A multi-AUV formation algorithm combining artificial potential field and virtual structure[J]. Acta Armamentarii, 2017, 38(2): 326-334. [6]QI X. Adaptive coordinated tracking control of multiple autonomous underwater vehicles[J]. Ocean Engineering, 2014, 91: 84-90. [7]SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015, 105: 196-205. [8]ROUT R, SUBUDHI B. A backstepping approach for the formation control of multiple autonomous underwater vehicles using a leader-follower strategy[J]. Journal of Marine Engineering & Technology, 2016, 15(1): 38-46. [9]DAS B, SUBUDHI B, PATI B B. Cooperative formation control of autonomous underwater vehicles: An overview[J]. International Journal of Automation and Computing, 2016, 13(3): 199-225. [10]DAS B, SUBUDHI B, PATI B B. Co-operative control coordination of a team of underwater vehicles with communication constraints [J]. Transactions of the Institute of Measurement and Control, 2016 (13): 463-481. [11]丁国华, 朱大奇. 多 AUV 主从式编队及避障控制方法[J]. 高技术通讯, 2014, 24(5): 538-544. DING Guohua, ZHU Daqi. Control of leader-follower formation and obstacle avoidance for multi-AUV[J]. Chinese High Technology Letters, 2014, 24(5): 538-544. [12]向先波. 二阶非完整性水下机器人的路径跟踪与协调控制研究[D]. 武汉: 华中科技大学, 2010. XIANG Xianbo. Research on path following and coordinated control for second-order nonholonomic AUVs[D]. Wuhan: Huazhong University of Science and Technology, 2010. [13]XIANG X B, YU C Y, NIU Z M, et al. Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance[J]. Sensors, 2016, 16(8): 1335. [14]杨波, 方华京. 具有通信约束的分布式水下航行器群编队控制[J]. 华中科技大学学报(自然科学版), 2009, 37(2): 57-60. YANG Bo, FANG Huajing. Distributed-control of maneuvers of underwater vehicle groups with communication constraints[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(2): 57-60. [15]DO K D, PAN J. Control of ships and underwater vehicles: Design for underactuated and nonlinear marine systems[M]. UK: Springer Science & Business Media, 2009.
文章导航

/