学报(中文)

有机玻璃观察窗的蠕变特性及数值模拟

展开
  • 1. 上海交通大学 高新船舶与深海开发装备协同创新中心, 上海 200240; 2. 上海海洋大学 上海深渊科学工程技术研究中心, 上海 201306
郭大猷(1994-),男,辽宁省大连市人,硕士生,现主要从事结构物强度与疲劳研究.

网络出版日期: 2019-05-28

基金资助

国家自然科学基金重点项目(51439004),国家自然科学基金面上项目(51679133)

The Creep Properties and Numerical Simulation for PMMA Window

Expand
  • 1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Online published: 2019-05-28

摘要

传统的线弹性模型在模拟载人深潜器的有机玻璃(PMMA)观察窗蠕变变形时表现出严重的局限性,为解决这一问题,构建了Prony级数形式的线性黏弹性本构模型.采用质量缩放技术和等效时长方法加快了显式动力有限元计算过程,得出了稳定且与实验数据接近的计算结果.结果表明:在常温、高应力、逐步加压的作业环境下,PMMA在加载阶段就已经表现出黏弹性行为.因此,为了保证安全,必须要在整个加压-保载过程中考虑黏弹性效应.结合准静态加载的条件,采用显式动力学分析取代传统的静态分析,与PMMA黏弹性的时变特性相适应.此外,针对观察窗模型局部应力集中的问题,设置倒角可以有效降低局部应力,有限元计算时网格收敛性也更好.

本文引用格式

郭大猷, 黄小平, 王芳 . 有机玻璃观察窗的蠕变特性及数值模拟[J]. 上海交通大学学报, 2019 , 53(5) : 513 -520 . DOI: 10.16183/j.cnki.jsjtu.2019.05.001

Abstract

The traditional linear elastic model demonstrates large limitation to simulate the creep deformation of the polymethyl methacrylate(PMMA) observation window on human occupied deep-sea vehicle. A linear viscoelastic constitutive model was built based on Prony series form. The mass scaling method together with the equivalent duration method was introduced to accelerate FEM analysis. The numerical-simulation results showed much stability and fitted well with test data. It was concluded that PMMA window showed viscoelastic behavior when loaded gradually to a high level at room temperature. So the viscoelasticity must be considered during a whole loading-holding process. Under quasi-static condition, traditional static FEM was replaced by dynamic explicit FEM which is adaptive to the time-varying property of PMMA viscoelasticity. It was also found that a fillet could help prevent local stress concentration and improve grid convergence.

参考文献

[1]刘道启, 胡勇, 王芳, 等. 载人深潜器观察窗的力学性能[J]. 船舶力学, 2010, 14(7): 782-788. LIU Daoqi, HU Yong, WANG Fang, et al. Creep property of observation window on manned deep-sea submersible[J]. Journal of Ship Mechanics, 2010, 14(7): 782-788. [2]田常录, 胡勇, 刘道启, 等. 深海耐压结构观察窗蠕变变形分析[J]. 船舶力学, 2010, 14(5): 526-532. TIAN Changlu, HU Yong, LIU Daoqi, et al. Creep analysis on deep-sea structure’s viewport windows[J]. Journal of Ship Mechanics, 2010, 14(5): 526-532. [3]谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究[J]. 实验力学, 2013, 28(2): 220-226. XIE Zhongqiu, ZHANG Pengpeng. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material[J]. Journal of Experimental Mechanics, 2013, 28(2): 220-226. [4]HU Wenjun, GUO Hui, CHEN Yongmei, et al. Experimental investigation and modeling of the rate-dependent deformation behavior of PMMA at different temperatures[J]. European Polymer Journal, 2016, 85: 313-323. [5]WANG Jun, XU Yingjie, ZHANG Weihong. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model[J]. Composite Structures, 2014, 108(1): 21-30. [6]UZAIR A D, ZHANG Weihong, XU Yingjie. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA[J]. International Journal of Mechanics & Materials in Design, 2014, 10(1): 93-107. [7]白杰. 超声振动辅助PMMA微压印成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. BAI Jie. Research on ultrasonic vibration assisted micro-embossing with PMMA[D]. Harbin: Harbin Institute of Technology, 2016. [8]WANG Fang, WANG Wuwu, ZHANG Yongkuang, et al. Effect of temperature and nonlinearity of PMMA material in the design of observation windows for a full ocean depth manned submersible[J]. Marine Technology Society Journal, 2019, 53(1): 27-36. [9]刘道启, 胡勇, 田常录, 等. 深海耐压结构观察窗应力分析[J]. 船舶力学, 2010, 14(1): 121-125. LIU Daoqi, HU Yong, TIAN Changlu, et al. Stress analysis on deep-sea structure’s viewport windows[J]. Journal of Ship Mechanics, 2010, 14(1): 121-125. [10]杜青海, 王嫘, 崔维成. 锥边球扇形观察窗结构的协调性分析[J]. 船舶力学, 2011(Z1): 101-108. DU Qinghai, WANG Lei, CUI Weicheng. Structural compatibility analysis of spherical sector view-port with conical seat.[J]. Journal of Ship Mechanics, 2011(Z1): 101-108. [11]郭春红, 陶忠, 张品乐. ABAQUS显式算法的准静态加速分析方法研究[J]. 低温建筑技术, 2015, 37(8): 73-75. GUO Chunhong, TAO Zhong, ZHANG Pinle. ABAQUS explicit algorithm acceleration method quasi-static analysis[J]. Low Temperature Architecture Technology, 2015, 37(8): 73-75. [12]LUO Wenbo, WANG Chuhong, ZHAO Rongguo. Application of time-temperature-stress superposition principle to nonlinear creep of poly(methyl methacrylate)[J]. Key Engineering Materials, 2007, 340/341: 1091-1096.[1]刘道启, 胡勇, 王芳, 等. 载人深潜器观察窗的力学性能[J]. 船舶力学, 2010, 14(7): 782-788. LIU Daoqi, HU Yong, WANG Fang, et al. Creep property of observation window on manned deep-sea submersible[J]. Journal of Ship Mechanics, 2010, 14(7): 782-788. [2]田常录, 胡勇, 刘道启, 等. 深海耐压结构观察窗蠕变变形分析[J]. 船舶力学, 2010, 14(5): 526-532. TIAN Changlu, HU Yong, LIU Daoqi, et al. Creep analysis on deep-sea structure’s viewport windows[J]. Journal of Ship Mechanics, 2010, 14(5): 526-532. [3]谢中秋, 张蓬蓬. PMMA材料的动态压缩力学特性及应变率相关本构模型研究[J]. 实验力学, 2013, 28(2): 220-226. XIE Zhongqiu, ZHANG Pengpeng. On the dynamic compressive mechanical properties and strain rate related constitutive model of PMMA material[J]. Journal of Experimental Mechanics, 2013, 28(2): 220-226. [4]HU Wenjun, GUO Hui, CHEN Yongmei, et al. Experimental investigation and modeling of the rate-dependent deformation behavior of PMMA at different temperatures[J]. European Polymer Journal, 2016, 85: 313-323. [5]WANG Jun, XU Yingjie, ZHANG Weihong. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model[J]. Composite Structures, 2014, 108(1): 21-30. [6]UZAIR A D, ZHANG Weihong, XU Yingjie. Numerical implementation of strain rate dependent thermo viscoelastic constitutive relation to simulate the mechanical behavior of PMMA[J]. International Journal of Mechanics & Materials in Design, 2014, 10(1): 93-107. [7]白杰. 超声振动辅助PMMA微压印成形工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. BAI Jie. Research on ultrasonic vibration assisted micro-embossing with PMMA[D]. Harbin: Harbin Institute of Technology, 2016. [8]WANG Fang, WANG Wuwu, ZHANG Yongkuang, et al. Effect of temperature and nonlinearity of PMMA material in the design of observation windows for a full ocean depth manned submersible[J]. Marine Technology Society Journal, 2019, 53(1): 27-36. [9]刘道启, 胡勇, 田常录, 等. 深海耐压结构观察窗应力分析[J]. 船舶力学, 2010, 14(1): 121-125. LIU Daoqi, HU Yong, TIAN Changlu, et al. Stress analysis on deep-sea structure’s viewport windows[J]. Journal of Ship Mechanics, 2010, 14(1): 121-125. [10]杜青海, 王嫘, 崔维成. 锥边球扇形观察窗结构的协调性分析[J]. 船舶力学, 2011(Z1): 101-108. DU Qinghai, WANG Lei, CUI Weicheng. Structural compatibility analysis of spherical sector view-port with conical seat.[J]. Journal of Ship Mechanics, 2011(Z1): 101-108. [11]郭春红, 陶忠, 张品乐. ABAQUS显式算法的准静态加速分析方法研究[J]. 低温建筑技术, 2015, 37(8): 73-75. GUO Chunhong, TAO Zhong, ZHANG Pinle. ABAQUS explicit algorithm acceleration method quasi-static analysis[J]. Low Temperature Architecture Technology, 2015, 37(8): 73-75. [12]LUO Wenbo, WANG Chuhong, ZHAO Rongguo. Application of time-temperature-stress superposition principle to nonlinear creep of poly(methyl methacrylate)[J]. Key Engineering Materials, 2007, 340/341: 1091-1096.
文章导航

/