Clutch engagement process consists of three sequential phases, i.e., open, slipping and stick (locked). The task scheduling period of the clutch control task should be selected carefully in case that the improper discretization leads to instability and deteriorates the engagement quality. An integrated approach which considers both control performance and real-time scheduling aspects is applied to allocate task scheduling periods. Firstly, the model of a closed-loop control system for a powertrain with a clutch element is developed and discretized by z-transformation. The stability criterion of the discretized system during slipping phase is derived, thus, the critical task scheduling period can be determined. The engagement quality in terms of vehicle jerk and clutch frictional losses is evaluated by simulation data, further, the dynamic response is also tested on transmission dynamometers. The results show that, the clutch engagement quality is insensitive to the task period which is less than the critical value, however, is deteriorated seriously when the task period exceeds the critical value.
[1]葛安林, 吴锦秋, 郭万富. 离合器最佳接合规律的研讨[J]. 汽车工程, 1988(2): 54-65.
GE Anlin, WU Jinqiu, GUO Wanfu. Research on optimizing enagaged-schedule of clutch[J]. Automotive Engineering, 1988(2): 54-65.
[2]王书全. 液力机械式自动变速器技术及发展[J]. 北京汽车, 1997(3): 1-6.
WANG Shuquan. Development of hydraulic mechanical automatic transmission[J]. Beijing Automotive Engineering, 1997(3): 1-6.
[3]李君, 张建武, 冯金芝, 等.电控机械式自动变速器的发展、现状和展望[J]. 汽车技术, 2000(3): 1-3.
LI Jun, ZHANG Jianwu, FENG Jinzhi, et al. Deve-lopment, current situation and forecast of electric controlled automated mechanical transmission[J]. Automobile Technology, 2000(3): 1-3.
[4]吴光强, 杨伟斌, 秦大同. 双离合器式自动变速器控制系统的关键技术[J]. 机械工程学报, 2007, 43(2): 13-21.
WU Guangqiang, YANG Weibin, QIN Datong. Key technique of dual clutch transmission control system[J]. Journal of Mechanical Engineering, 2007, 43(2): 13-21.
[5]杨亚联, 秦大同, 谢勇. 汽车无级变速器的类型及基本原理[J]. 汽车技术, 1997(3): 59-61.
YANG Yalian, QIN Datong, XIE Yong. Type and basic principle of automobile stepless transmission[J]. Automobile Technology, 1997(3): 59-61.
[6]CHAN C C. The state of the art of electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 704-718.
[7]陈俐, 张建武, 习纲. 自动离合器的自适应最优控制[J]. 上海交通大学学报, 2000, 34(10): 1312-1316.
CHEN Li, ZHANG Jianwu, XI Gang. Adaptive optimal control for automatic clutch[J]. Journal of Shanghai Jiao Tong University, 2000, 34(10): 1312-1316.
[8]HORN J, BAMBERGER J, MICHAU P, et al. Flatness-based clutch control for automated manual transmissions[J]. Control Engineering Practice, 2003, 11(12): 1353-1359.
[9]GLIELMO L, IANNELLI L, VACCA V, et al. Gearshift control for automated manual transmissions[J]. Control Engineering Practice, 2006, 11(1): 17-26.
[10]GAO B, CHEN H, LIU Q, et al. Clutch slip control of automatic transmissions: A nonlinear feedforward-feedback design[C]//Proceedings of the 2010 IEEE International Conference on Control Applications, Yokohama, 2010: 884-889.
[11]DOLCINI P, BECHART H, WIT C C D. Observer-based optimal control of dry clutch engagement[C]//Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005, 62(4): 440-445.
[12]GLIELMO L, VASCA F. Optimal control of dry clutch engagement[M]. SAE Technical Paper, 2000.
[13]AMARI R, TONA P, ALAMIR M. Experimental evaluation of a hybrid MPC strategy for vehicle start-up with an automated manual transmission[C]//Proceedings of the 2009 European Control Conference, Budapest, 2009: 4271-4277.
[14]刘怀, 王绪伟, 胡继峰. 控制系统周期性任务调度中优化采样频率的求取[J]. 计算机工程与应用, 2002, 38(14): 76-78.
LIU Huai, WANG Xuwei, HU Jifeng. Solving optimal sampling frequencies for periodic task scheduling in control system[J]. Computer Engineering and Applications, 2002, 38(14): 76-78.
[15]WU Y, BUTTAZZO G, BINI E, et al. Parameter selection for real-time controllers in resource-constrained systems[J]. IEEE Transactions on Industrial Informatics, 2010, 6(4): 610-620.
[16]AYDIN H, MELHEM R, MOSSE D, et al. Optimal reward-based scheduling for periodic real-time tasks[J]. IEEE Transactions on Computers, 2001, 50(2): 111-130.
[17]CERVIN A, VELASCO M, MARTI P, et al. Optimal online sampling period assignment: Theory and experiments[J]. IEEE Transactions on Control Systems Technology, 2011, 19(4): 902-910.
[18]DAI S L, LIN H, GE S S. Scheduling-and-control codesign for a collection of networked control systems with uncertain delays[J]. IEEE Transactions on Control Systems Technology, 2010, 18(1): 66-78.
[19]ZHANG L, GAO H, KAYNAK O. Network-induced constraints in networked control systems—A survey[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 403-416.
[20]KULKARNI M, SHIM T, ZHANG Y. Shift dynamics and control of dual-clutch transmissions[J]. Mechanism and Machine Theory, 2007, 42(2): 168-182.
[21]CHEN L, XI G, SUN J. Torque coordination control during mode transition for a series-parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(7): 2936-2949.
[22]CHEN L, LIU F, YAO J, et al. Design and validation of clutch-to-clutch shift actuator using dual-wedge mechanism[J]. Mechatronics, 2017, 42(Sup C): 81-95.
[23]GAO B, CHEN H, HU Y, et al. Nonlinear feedforward-feedback control of clutch-to-clutch shift technique[J]. Vehicle System Dynamics, 2011, 49(12): 1895-1911.
[24]陈俐, 张建武, 黄维纲. 汽车电控离合器的反馈线性化控制[J]. 上海交通大学学报, 2000, 34(3): 384-388.
CHEN Li, ZHANG Jianwu, HUANG Weigang. Feedback linearization control for electrically controllable clutches[J]. Journal of Shanghai Jiao Tong University, 2000, 34(3): 384-388.
[25]程东升, 顾力强, 张建武. 基于反馈线性化的汽车AMT离合器滑模控制[J]. 汽车工程, 2002, 24(5): 384-386.
CHENG Dongsheng, GU Liqiang, ZHANG Jianwu. Sliding mode control for electrically controlled clutch of AMT based on feedback linearization[J]. Automotive Engineering, 2002, 24(5): 384-386.
[26]RICHARD C D, ROBERT H B. Modern control systems[M]. 13th Edition. Boston: Pearson, 2016: 602-620.