针对自主设计的宽体客机大涵道比涡扇发动机反推格栅,在栅前马赫数Main分别为 0.18、0.30 和 0.35 这3种典型工况下进行了实验与数值模拟研究,获得了反推格栅的气动性能和流场特性,并验证校准了反推格栅的数值模拟方法.数值模拟与实验测量的对比结果表明:数值模拟可以较准确地预测反推格栅的性能;反推格栅的出口总压恢复系数及出口落后角分布均与实验值较为吻合.
In this paper, experimental and numerical simulation methods were employed to investigate the aerodynamic performance and flow field characteristics of an independent design thrust reverser cascade of high bypass ratio turbofan engine for wide-body aircrafts. The numerical simulation was calibrated through experiments at three typical operating points of 0.18, 0.30 and 0.35 inlet Mach number. The results of the comparison between numerical simulation and experimental measurements show that the average total pressure recovery coefficient and the deviation angle of numerical simulation are in good agreement with the experimental results.
[1]张艳慧, 秦浩, 王代军. 发动机反推力系统安全性设计[J]. 航空动力学报, 2015, 30(7): 1784-1792.
ZHANG Yanhui, QIN Hao, WANG Daijun. Engine reverser thrust system safety design[J]. Journal of Aerospace Power, 2015, 30(7): 1784-1792.
[2]王鹏, 付涵, 陈迎春, 等. 反推二维格栅气动设计[J]. 科学技术与工程, 2017, 17(11): 336-340.
WANG Peng, FU Han, CHEN Yingchun, et al. Aerodynamic design of two-dimensional reverser cascade[J]. Science Technology and Engineering, 2017, 17(11): 336-340.
[3]JACKSON J. Development of the Boeing 767 thrust reverser[C]//22nd Joint Propulsion Conference. Huntsville, Alsbama, USA: AIAA, 1986: 1536.
[4]ASBURY S C, YETTER J A. Static performance of six innovative thrust reverser concepts for subsonic transport applications[R]. Hampton, VA, USA: NASA Langley Research Center, 2000.
[5]史经纬, 王占学, 张晓博, 等. 无阻流板式叶栅反推性能试验研究[J]. 空气动力学学报, 2013, 31(6): 753-758.
SHI Jingwei, WANG Zhanxue, ZHANG Xiaobo, et al. Experimental study on performance of blockerless cascade thrust reverser[J]. Acta Aerodynamica Sinica, 2013, 31(6): 753-758.
[6]MAHMOOD T, JACKSON A, RIZVI S H, et al. Thrust reverser for a mixed exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance[C]//ASME 2012 Turbo Expo. Copenhagen, Denmark: ASME, 2012: 205-215.
[7]陈著, 单勇, 沈锡钢, 等. 叶栅式反推力装置开启过程的三维非稳态数值模拟与分析[J]. 航空动力学报, 2017, 32(9): 2132-2138.
CHEN Zhu, SHAN Yong, SHEN Xigang, et al. Three-dimensional unsteady numerical simulation and analysis of deployment for cascade thrust reverser [J]. Journal of Aerospace Power, 2017, 32(9): 2132-2138.
[8]GISSEN A N, VUKASINOVIC B, PACKARD N O, et al. Flow control of a cascade thrust reverser[J]. Journal of Propulsion and Power, 2017, 33(4): 1020-1030.
[9]RAJPUT P, KALKHORAN I. Computational analysis and optimization of blockerless engine thrust reverser concept[C]//54th AIAA Aerospace Sciences Meeting. California, USA: AIAA, 2016: 0293.
[10]RAJPUT P, KALKHORAN I. Optimization of blockerless engine thrust reverser[J]. Journal of Propulsion and Power, 2017, 33(1): 213-226
[11]CAMPBELL A, CHENG A. Uncertainty analysis for calculating reverse thrust using in situ data[C]//16th AIAA Aviation Technology, Integration, and Operations Conference. Washington, DC, USA: AIAA, 2015: 4363.
[12]陈著, 单勇, 沈锡钢, 等. 射流控制反推力装置流场数值研究[J]. 推进技术, 2014, 35(9): 1181-1187.
CHEN Zhu, SHAN Yong, SHEN Xigang, et al. Numerical study on thrust reverser controlled with secondary flow[J]. Journal of Propulsion Technology, 2014, 35(9): 1181-1187
[13]周莉, 王占学, 任亚强, 等. 叶栅安装角对无阻流板式叶栅反推装置性能影响的研究[J]. 工程热物理学报, 2015, 36(12): 2589-2593.
ZHOU Li, WANG Zhanxue, REN Yaqiang, et al. Influence of cascade inlet installation angle on performance of blockerless thrust reverser[J]. Journal of Engineering Thermophysics, 2015, 36(12): 2589-2593.
[14]王志强, 沈锡钢, 胡骏. 反推状态下大涵道比涡扇发动机气动稳定性预测与评估[J]. 航空学报, 2017, 38(2): 120192-1-11.
WANG Zhiqiang, SHEN Xigang, HU Jun. Prediction and evaluation of aerodynamic stability of high bypass ratio turbofan engine deployed with thrust reverser[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 120192-1-11.
[15]WANG Z Q, SHEN X G, HU J, et al. Numerical prediction of the influence of thrust reverser on aeroengine’s aerodynamic stability[J]. International Journal of Turbo & Jet Engines, 2017, 34(4): 353-364.