应用计算流体动力学(CFD)方法数值模拟约束模试验以获取船舶操纵水动力导数,是建立船舶操纵运动数学模型的有效方法.在数值模拟全附体约束模试验中,选定合适的螺旋桨建模方法,是既快速又准确地计算船体水动力的关键.应用CFD方法求解雷诺平均Navier-Stokes(RANS)方程,分别采用体积力法和基于实桨的滑移网格法对螺旋桨进行处理,数值模拟了全附体KCS船模的斜拖试验;通过水动力数值计算结果与基准试验数据的比较,验证了所采用的数值方法的可靠性.对两种螺旋桨建模方法的结果进行比较可以发现,综合考虑计算成本和计算精度,体积力法可以代替实桨方法进行全附体约束模斜拖试验数值模拟.
It is an effective method to establish the mathematical model of ship maneuvering motion by using CFD (computational fluid dynamics) method to simulate the captive model tests to obtain the hydrodynamic derivatives. When the captive model tests of a fully appended ship are numerically simulated, the key issue is to select a suitable propeller modeling method to compute the hydrodynamic force on the ship efficiently and accurately. Using CFD method, the oblique-towing tests of a fully appended KCS ship model are numerically simulated by solving the Reynolds-averaged Navier-Stokes (RANS) equations. Both the body force method and the sliding mesh method based on real propeller are used to deal with the rotating propeller. By comparing the computed hydrodynamic forces with the benchmark data, the numerical method is verified. The results of the two methods for dealing with the propeller are compared, and it shows that considering the computation efficiency and accuracy, the body force method can replace the real propeller method to simulate the oblique-towing test of fully appended ships.
[1]STERN F, YANG J, WANG Z, et al. Computational ship hydrodynamics: Nowadays and way forward[J]. International Shipbuilding Progress, 2013, 60(1-4): 3-105.
[2]YAO J X, JIN W, SONG Y. RANS simulation of the flow around a tanker in forced motion[J]. Ocean Engineering, 2016, 127: 236-245.
[3]王建华, 万德成. 基于重叠网格技术数值模拟船舶纯摇首运动[J]. 水动力学研究与进展(A辑), 2016, 31(5): 567-574.
WANG Jianhua, WAN Decheng. Numerical simulation of pure yaw motion using dynamic overset grid technology[J]. Chinese Journal of Hydrodynamics, 2016, 31(5): 567-574.
[4]冯松波, 邹早建, 邹璐. KVLCC2船-舵系统斜航水动力数值计算[J]. 上海交通大学学报, 2015, 49(4): 470-474.
FENG Songbo, ZOU Zaojian, ZOU Lu. Numerical calculation of hydrodynamic forces on a KVLCC2 hull-rudder system in oblique motion[J]. Journal of Shanghai Jiao Tong University, 2015, 49(4): 470-474.
[5]BADOE C E, PHILLIPS A B, TURNOCK S R. Influence of drift angle on the computation of hull-propeller-rudder interaction[J]. Ocean Engineering, 2015, 103: 64-77.
[6]WANG C, SUN S, SUN S, et al. Numerical analysis of propeller exciting force in oblique flow[J]. Journal of Marine Science and Technology, 2017, 22(4): 602-619.
[7]吴召华. 基于体积力法的船/桨/舵粘性流场的数值研究[D]. 上海: 上海交通大学, 2013.
WU Zhaohua. Numerical study of viscous flow around ship hull/propeller/rudder with a body-force propeller [D]. Shanghai: Shanghai Jiao Tong University, 2013.
[8]SIMONSEN C, OTZEN J, KLIMT C, et al. Maneuvering predictions in the early design phase using CFD generated PMM data[C]//Larsson L, Abrahamsson S, Backman C. Proceedings of 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, 2012.
[9]XING-KAEDING Y. Unified approach to ship seakeeping and maneuvering by a RANSE method[D]. Hamburg: Hamburg University of Technology, 2006.
[10]SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
[11]HOUGH G, ORDWAY D. The generalized actuator disk[R]. Technical Report TARTR 6401, Therm Advanced Research, Inc, 1964.
[12]SIMONSEN C D, STERN F, QUADVLIEG F, et al. SIMMAN2014[EB/OL]. (2013.11.08). http://www.simman2014.dk/.
[13]YOSHIMURA Y, UENO M, TSUKADA Y. Circular Motion Test (CMT) Program for KCS in deep water at NMRI[C]//Stern F, Agdrup K. Proceedings of SIMMAN 2008 Workshop on Verification and Validation of Ship Maneuvering Simulation Methods, Copenhagen, Denmark, 2008.
[14]CD-adapco, STAR CCM+user guide[M], Version 10.06. 2014.
[15]LIU Y, ZOU L, ZOU Z J. Computational fluid dynamics prediction of hydrodynamic forces on a manoeuvring ship including effects of dynamic sinkage and trim[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017. https://doi.org/10.1177/1475090217734685.