学报(中文)

基于数值模拟的芯片冷却散热器结构优化

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
李健(1994-),男,四川省南充市人,硕士生,主要从事电子器件热管理研究.E-mail:lijian24@sjtu.edu.cn.

网络出版日期: 2019-04-28

Structure Optimization of Chip Cooling Radiator Based on Numerical Simulation

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-04-28

摘要

针对计算机芯片冷却的典型散热器进行了三维数值模拟,对比分析了4类散热器的芯片冷却性能及翅片厚度的影响,得到了性能较佳的散热器模型和翅片厚度值.结果表明:散热器对称中心区域换热效果较差,两侧区域换热效果较好,结构设计时可重点考虑对称中心区域的强化传热.相对于A型和B型散热器,采用C型和D型散热器时,对流换热系数有显著提高,C型散热器的基板加热面温度明显降低,芯片冷却效果较佳.翅片厚度为2mm时,A型、B型和C型散热器冷却效果较佳,D型散热器翅片厚度最佳值为 2.5mm.该研究对20种不同结构尺寸的散热器进行定量对比分析,阐述了流动传热特性,为芯片冷却散热器的结构优化设计提供了理论依据和工程指导.

本文引用格式

李健,陆繁莉,董威,蔡一凡,许梦玫 . 基于数值模拟的芯片冷却散热器结构优化[J]. 上海交通大学学报, 2019 , 53(4) : 461 -467 . DOI: 10.16183/j.cnki.jsjtu.2019.04.010

Abstract

Three-dimensional numerical simulation of chip cooling radiator was carried out and the performance of four different radiators and influence of fin thickness were contrastively analyzed. Radiator model and fin thickness with better performance were also obtained. The results indicated that the heat transfer effect in both sides of radiator was better than that in the symmetrical central region, which meant that the heat transfer enhancement in the symmetrical central region should be mainly taken into account in the radiator structural design. The heat transfer coefficient of C-type and D-type radiators was obviously improved compared with A-type and B-type radiators. The temperature of substrate heating surface of C-type was much lower and the performance was better. When the fin thickness was 2mm, the cooling effect of A-type, B-type and C-type radiators was better, while the optimum value of D-type radiator was 2.5mm. 20 kinds of radiators with different structural dimensions were comprehensively analyzed in the study and the characteristics of flow and heat transfer were stated, which provided a theoretical basis and engineering guidance for the structural optimization design of chip cooling radiators.

参考文献

[1]高翔, 凌惠琴, 李明, 等. CPU散热技术的最新研究进展[J]. 上海交通大学学报, 2007, 41(Sup.2): 48-52. GAO Xiang, LING Huiqin, LI Ming, et al. Recent advance in cooling techniques for CPU[J]. Journal of Shanghai Jiao Tong University, 2007, 41(Sup.2): 48-52. [2]CORMIER Y, DUPUIS P, FARJAM A, et al. Additive manufacturing of pyramidal pin fins: Height and fin density effects under forced convection[J]. International Journal of Heat and Mass Transfer, 2014, 75: 235-244. [3]CUI Z. Effect of heat sink structure improvement on heat dissipation performance in high heat flux[C]//5th International Conference on Micro/Nanoscale Heat and Mass Transfer. Singapore: ASME, 2016: MNHMT2016-6726. [4]DESHMUKH P A, WARKHEDKAR R M. Thermal performance of elliptical pin fin heat sink under combined natural and forced convection[J]. Experimental Thermal and Fluid Science, 2013, 50: 61-68. [5]KOTCIOGLU I, KHALLAJI N, UURLU A. Numerical analysis in a rectangular duct heat exchanger with heat sink plate-fins using CFD[EB/OL]. [2017-08-26]. http://www.researchgate.net. [6]KOTCIOGLU I, CANSIZ A, KHALAJI M N. Experimental investigation for optimization of design parameters in a rectangular duct with plate-fins heat exchanger by Taguchi method[J]. Applied Thermal Engineering, 2013, 50(1): 604-613. [7]RAVIKUMAR S, CHANDRA P S, HARISH R, et al. Experimental and transient thermal analysis of heat sink fin for CPU processor for better perfor-mance[J]. IOP Conference Series: Materials Science and Engineering, 2017, 197(1): 012085. [8]陆正裕, 熊建银, 屈治国, 等. CPU散热器换热特性的实验研究[J]. 工程热物理学报, 2004, 25(5): 861-863. LU Zhengyu, XIONG Jianyin, QU Zhiguo, et al. An experiment study on two kinds of heat sinks of CPU[J]. Journal of Engineering Thermophysics, 2004, 25(5): 861-863. [9]赵明, 卞恩杰, 杨茉, 等. 风扇结构和肋高对芯片散热器散热性能的影响[J]. 流体机械, 2013, 41(12): 60-64. ZHAO Ming, BIAN Enjie, YANG Mo, et al. Influence of fan structure and rib height for the perfor-mance of chip radiator[J]. Fluid Machinery, 2013, 41(12): 60-64. [10]王海民, 王喜芳, 魏辉, 等. 针肋散热器针径和间距对性能影响分析[J]. 热科学与技术, 2016, 15(6): 505-509. WANG Haimin, WANG Xifang, WEI Hui, et al. Analysis of diameter and spacing of pins on characte-ristic of pin-finned heat radiators[J]. Journal of Thermal Science and Technology, 2016, 15(6): 505-509. [11]李燚, 张永恒. CPU散热器换热特性的数值研究[J]. 制冷与空调, 2007, 21(4): 98-100. LI Yi, ZHANG Yongheng. The numerical simulation of one radiator structure[J]. Refrigeration and Air Conditioning, 2007, 21(4): 98-100. [12]张远波. 风冷式CPU散热片的热分析及其优化设计[D]. 武汉: 华中科技大学, 2006. ZHANG Yuanbo. Research on thermal analysis and optimization of air-cooled heat sinks[D]. Wuhan: Huazhong University of Science and Technology, 2006. [13]胡艳, 郭广思, 尚新泉. CPU散热器数值模拟分析[J]. 低温与超导, 2009, 37(9): 60-65. HU Yan, GUO Guangsi, SHANG Xinquan. Simulation of heat transfer in the CPU ribbed radiator[J]. Cryogenics and Superconductivity, 2009, 37(9): 60-65. [14]伊丽娜, 郑文龙, 王博杰, 等. 新型CPU散热器内空气流动与换热特性的数值研究[J]. 制冷技术, 2015, 35(1): 36-40. YI Lina, ZHENG Wenlong, WANG Bojie, et al. Numerical study on flow and heat transfer characte-ristics of air in a new CPU heat sink[J]. Chinese Journal of Refrigeration Technology, 2015, 35(1): 36-40.
文章导航

/