在线性层结盐水中进行18组浮力羽流实验,采用粒子图像测速(PIV)技术获取羽流的时空高分辨率流场,提出浮力羽流最大输移质量计算公式,并定量分析羽流卷吸及质量输移过程.实验结果表明:卷吸系数从喷口处开始沿着射流方向逐渐增加,并在最大穿透距离 0.3~0.5 倍时,于数值 0.11 左右波动,之后逐渐减小为负值.浮力羽流在羽干处卷吸入周围环境流体后,沿射流方向被输移到最大穿透距离处,并在其约 0.65 倍处垂向质量通量达到最大值;混合后的羽流最终在中性浮力层向四周扩散;最大输移质量由浮力通量、浮力频率和与喷口处于相同高度的周围环境密度共同决定.层结环境折射率变化引起的伪湍动进而导致最大输移质量计算误差约为3%,因此折射率变化的影响可以忽略.
Eighteen experimental cases for the buoyant plume were conducted in linearly stratified saltwater. The particle image velocimetry (PIV) technique was used to acquire flow fields of plumes in high spatial and temporal resolutions. A new formula for maximum transported mass of buoyant plumes in stratified fluids was proposed. The process for entrainment and mass transport of plumes were analyzed quantitatively. Results show that the entrainment coefficient αe increases gradually along the jetting direction from the source, fluctuates at 0.11 from 0.3Zmax to 0.5Zmax (Zmax is the maximum penetration distance) and then decreases gradually to negative. The buoyant plume which entrains ambient fluids from the plume stem is transported to -Zmax along the jetting direction and its vertical mass flux reaches the maximum at about -0.65Zmax. The mixed plume finally spreads to surroundings at the neutral buoyancy layer. The maximum transported mass is determined by the buoyancy flux, the buoyancy frequency and the environment density at the same level. The calculation error due to pseudo turbulence caused by variations of the refractive index within the stratified fluid is about 3%, so the influence of refractive index is negligible.
[1]TURNER J S. Buoyant plumes and thermals [J]. Annual Review of Fluid Mechanics, 1969, 1: 29-44.
[2]易亮, 杨洋, 李勇, 等. 水平风作用下火羽流的质量流率 [J]. 燃烧科学与技术, 2011, 17(6): 505-511.
YI Liang, YANG Yang, LI Yong, et al. Mass flow rate of plume under horizontal wind [J]. Journal of Combustion Science and Technology, 2011, 17(6): 505-511.
[3]李军, 孙治雷, 黄威, 等. 现代海底热液过程及成矿 [J]. 地球科学——中国地质大学学报, 2014, 39(3): 312-324.
LI Jun, SUN Zhilei, HUANG Wei, et al. Modern seafloor hydrothermal processes and mineralization [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(3): 312-324.
[4]LUPTON J E. Hydrothermal plumes: Near and far field [C]//HUMPHRIS S E, ZIERENBERG R A, MULLINEAUX L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC, USA: the American Geophysical Union, 1995: 317-346.
[5]MORTON B R, TAYLOR G, TURNER J S. Turbulent gravitational convection from maintained and instantaneous sources [J]. Proceedings of the Royal Society of London, Series A, 1956, 234(1196): 1-23.
[6]魏文礼, 赵小军, 刘玉玲. 气泡浮力羽流动力特性三维数值模拟研究 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(5): 229-234.
WEI Wenli, ZHAO Xiaojun, LIU Yuling. Three-dimensional numerical simulation of dynamic characteristics of air bubble buoyancy plume [J]. Journal of Northwest A&F University (Nat. Sci. Ed.), 2014, 42(5): 229-234.
[7]何标, 蒋新生, 孙国骏, 等. 基于大涡模拟的气体羽流分层特性数值模拟 [J]. 后勤工程学院学报, 2015, 31(1): 38-44.
HE Biao, JIANG Xinsheng, SUN Guojun, et al. Numerical simulation of gas plume stratification cha-racteristics based on large eddy simulation [J]. Journal of Logistical Engineering University, 2015, 31(1): 38-44.
[8]PHAM M V, PLOURDE F, KIM D S. Three-dimensional characterization of a pure thermal plume [J]. Journal of Heat Transfer, 2005, 127(6): 624-636.
[9]HAN D, MUNGAL M G. Direct measurement of entrainment in reacting/nonreacting turbulent jets [J]. Combustion and Flame, 2001, 124(3): 370-386.
[10]MIRAJKAR H N, BALASUBRAMANIAN S. Effects of varying ambient stratification strengths on the dynamics of a turbulent buoyant plume [J]. Journal of Hydraulic Engineering, 2017, 143(7): 04017013.
[11]GHAJAR A J, BANG K. Experimental and analytical studies of different methods for producing stratified flows [J]. Energy, 1993, 18(4): 323-334.
[12]张巍, 赵亮, 贺治国, 等. 线性层结盐水中的羽流运动特性 [J]. 水科学进展, 2016, 27(4): 602-608.
ZHANG Wei, ZHAO Liang, HE Zhiguo, et al. Characteristics of plumes in linearly stratified salt-water [J]. Advances in Water Science, 2016, 27(4): 602-608.
[13]HELFRICH K R, BATTISTI T M. Experiments on baroclinic vortex shedding from hydrothermal plumes [J]. Journal of Geophysical Research: Oceans, 1991, 96(C7): 12511-12518.
[14]AYOTEE B A, FERNANDO H J S. The motion of a turbulent thermal in the presence of background rotation [J]. Journal of the Atmospheric Sciences, 1994, 51(13): 1989-1994.
[15]RICHARDS T S, AUBOURG Q, SUTHERLAND B R. Radial intrusions from turbulent plumes in uniform stratification [J]. Physics of Fluids, 2014, 26(3): 036602.
[16]FOFONOFF N P, MILLARD R C. Algorithms for computation of fundamental properties of seawater [R]. Paris, France: Division of Marine Science Unesco, 1983.
[17]JIANG H S, BREIER J A. Physical controls on mixing and transport within rising submarine hydrothermal plumes: A numerical simulation study [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 92: 41-55.
[18]TURNER J S. Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows [J]. Journal of Fluid Mechanics, 1986, 173: 431-471.