学报(中文)

屏蔽式核主泵飞轮裂纹寿命评估

展开
  • 上海交通大学 核科学与工程学院, 上海 200240
刘昺轶(1993-),男,浙江省宁波市人,硕士生,现主要从事核电主泵相关研究.

网络出版日期: 2019-03-28

基金资助

国家重点基础研究发展规划(973)项目(2015CB057306),国家自然科学基金资助项目(51576125)

Crack Life Evaluation of Flywheel for Canned Main Pump

Expand
  • School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-03-28

摘要

针对结构、受力复杂的双金属屏蔽式核主泵飞轮,提出了新的裂纹寿命评估方法.建立了存在裂纹的三维飞轮模型,应用有限元法计算飞轮裂纹的应力强度因子,揭示了应力强度因子随转速、裂纹深度和长度的变化规律,利用所得规律修正应力强度因子的计算公式,并结合Paris公式对飞轮裂纹进行寿命评估,解决了以往研究方法中存在的适用性问题.

本文引用格式

刘昺轶,张继革,王德忠,李斌 . 屏蔽式核主泵飞轮裂纹寿命评估[J]. 上海交通大学学报, 2019 , 53(3) : 315 -320 . DOI: 10.16183/j.cnki.jsjtu.2019.03.008

Abstract

A new crack life assessment method is proposed for the bimetal shielded nuclear main pump flywheel with complex structure and force. This paper establishes a three-dimensional model of canned main pump flywheel with crack and uses the finite element software ANSYS Workbench to analyze the fracture mechanics. Then we find the relationship between the stress intensity factor of flywheel crack with the rotational speed, crack depth and crack length, which is used to fix the formula of stress intensity factor. Moreover, we use the Paris formula to evaluate the life of flywheel crack. The stress distribution of the flywheel and the stress intensity factor of the crack are obtained, and the relationship between crack size and the stress intensity factor is found to calculate the crack life, which is within safety limits. The revised calculation method is adopted to bimetallic flywheel for canned main pump under complex situations and with complex structures.

参考文献

[1]项京锋, 郭鹏, 周新华. AP1000屏蔽式主泵的制造难点及国产化[C]//中国核能行业协会2010年中国核能可持续发展论文集. 北京: 中国核能行业协会, 2010: 138-144. XIANG Jingfeng, GUO Peng, ZHOU Xinhua. Difficulties in manufacturing and localization of AP1000 shielded main pump[C]//China Nuclear Energy Industry Association 2010 China Nuclear Energy Sustainable Development Proceedings. Beijing: China Nuclear Energy Industry Association, 2010: 138-144. [2]PARK J S, SONG H C, YOON K S, et al. Structural integrity evaluation for interference-fit flywheels in reactor coolant pumps of nuclear power plants[J]. Journal of Mechanical Science and Technology, 2005, 19(11): 1988-1997. [3]ORM W U. Structural analysis summary for the reactor coolant pump high inertia flywheel [M]. Charlotte, NC: Curtiss-Wright Electro-Mechanical Corporation, 2006. [4]李笑天, 鞠红惠, 何树延, 等. 主循环泵惯性飞轮完整性分析[J]. 原子能科学技术, 2007, 41(4): 463-467. LI Xiaotian, JU Honghui, HE Shuyan, et al. Integrity analysis of inertia flywheel of main circulating pump[J]. Atomic Energy Science and Technology, 2007, 41(4): 463-467. [5]葛磊, 王德忠, 张继革. 屏蔽电机主泵惯性飞轮完整性分析[J]. 上海理工大学学报, 2012, 34(6): 584-588. GE Lei, WANG Dezhong, ZHANG Jige. Integrity analysis of inertia flywheel of shield motor main pump[J]. Journal of University of Shanghai for Science and Technology, 2012, 34(6): 584-588. [6]ASME. ASME boiler and pressure vessel code section XI[S]. New Yrok: ASME, 2010: 395-405. [7]张贵滨. 冷却剂泵电机飞轮完整性分析[J]. 民营科技, 2010(6): 16. ZHANG Guibin. Integrity analysis of flywheel of coolant pump motor[J]. Private Technology, 2010(6): 16. [8]贾鑫, 杨彬. 飞轮断裂力学分析[J]. 电子世界, 2013(6): 82. JIA Xin, YANG Bin. Fracture mechanics analysis of flywheel[J]. Electronics World, 2013(6): 82. [9]陈传尧, 高大兴. 表面裂纹的应力强度因子[J]. 机械强度, 1984(1): 41-57. CHEN Chuanyao, GAO Daxing. Stress intensity factor of surface crack[J]. Journal of Mechanical Strength, 1984(1): 41-57. [10]US Nuclear Regulatory Commission. NUREG-0800[J]. Standard Review Plan, 2007, 3(3): 5.4.1.1-6. [11]PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. [12]中国航空研究院. 应力强度因子手册[M]. 增订版.北京: 科学出版社, 1993: 344-348. China Aviation Research Institute. Stress intensity factor handbook[M]. Updated edition. Beijing: Science Press, 1993: 344-348. [13]机械设计手册编委会. 机械设计手册: 疲劳强度设计[M]. 北京: 机械工业出版社, 2007: 134. Mechanical Design Manual Editorial Board. Mechanical design manual: Fatigue strength design[M]. Beijing: Mechanical Industry Press, 2007: 134.
文章导航

/