学报(中文)

考虑焊接变形的装配偏差分析在动力集中型动车组中的应用

展开
  • 1. 上海交通大学 上海市复杂薄板结构数字化制造重点实验室, 上海 200240; 2. 中车唐山机车车辆有限公司, 河北 唐山 063035
姚利民(1992-),男,江苏省扬州市人,硕士生,主要研究方向为产品装配质量控制.

网络出版日期: 2019-03-28

基金资助

国家自然科学基金(51775346),中车唐山公司项目(5212302-X514-F1701)

Assembly Deviation Simulation Considering Welding Deformation Applied on Electric Multiple Unit

Expand
  • 1. Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China; 2. CRRC Tangshan Co., Ltd., Tangshan 063035, Hebei, China

Online published: 2019-03-28

摘要

焊接是列车车体装配过程中应用最为广泛的连接方式,焊接变形会对动车组装配尺寸精度产生较大的影响.针对动车组侧墙窗口模块焊接装配尺寸控制问题,利用热弹塑性有限元法提取3种典型焊接接头的固有应变,并基于固有应变法得到窗口模块的焊后变形量;结合三维尺寸装配偏差分析,最终给出计及焊接收缩量变化的侧墙窗口模块的偏差结果.将模拟结果与实测数据进行对比分析,结果表明:考虑焊接变形因素的装配偏差模拟结果与实际测量值较为吻合,故该方法可对动车组侧墙窗口模块的焊接装配偏差进行有效且准确的预测.

本文引用格式

姚利民,张道刘,侯秀娟,刘涛,李志敏 . 考虑焊接变形的装配偏差分析在动力集中型动车组中的应用[J]. 上海交通大学学报, 2019 , 53(3) : 260 -268 . DOI: 10.16183/j.cnki.jsjtu.2019.03.002

Abstract

Welding is the most widely used connection mode in the assembly process of the electric multiple unit (EMU) while the deformation induced by welding will have a great influence on the assembly precision. The influence of welding deformation on the assembly precision of the sidewall window module is discussed in this paper. Firstly, the inherent strain of three typical welded joints in the sidewall window module of the EMU is extracted by the thermal elastic-plastic finite element method. Then, the deformation of the sidewall window module is obtained by the finite element simulation based on the inherent strain method. The obtained deformation is considered as a mean shift to amend the 3D assembly variation simulation results of the window module. Finally, the amended simulation results are compared with the measured data. The simulation results of assembly variation considering welding deformation have a good agreement with the actual measured data which indicates that the proposed method is more accurate and feasible for predicting the assembly variation of the sidewall window module of the EMU.

参考文献

[1]吴桃生, 李志敏, 王华, 等. 基于工装预变形的高速列车侧墙尺寸偏差控制方法[J]. 铁道机车车辆, 2012, 32(1): 1-5. WU Taosheng, LI Zhimin, WANG Hua, et al. Variation control method for the sidewall of highspeed train based on fixture’s pre-variation[J]. Railway Locomotive & Car, 2012, 32(1): 1-5. [2]张风东, 刘胜龙. 高速动车组铝合金车体底架焊接变形控制[J]. 机车车辆工艺, 2012, (6): 22-23. ZHANG Fengdong, LIU Shenglong. Control measure of deformation on auto welding technology of underframe on EMU [J]. Locomotive & Rolling Stock Technology, 2012, (6): 22-23. [3]DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Computational Materials Science, 2006, 37(3): 269-277. [4]TENG T L, FUNG C P, CHANG P H, et al. Analysis of residual stresses and distortions in T-joint fillet welds [J]. International Journal of Pressure Vessels & Piping, 2001, 78(8): 523-538. [5]PERI M, TONKOVI Z, RODI A, et al. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld [J]. Materials and Design, 2014, 53: 1052-1063. [6]UEDA Y, YUAN M G. Prediction of residual stresses in butt welded plates using inherent strains [J]. Journal of Engineering Materials & Technology, 1993, 115(4): 417-423. [7]DENG D, MURAKAWA H. FEM prediction of buckling distortion induced by welding in thin plate panel structures [J]. Computational Materials Science, 2008, 43(4): 591-607. [8]DENG D, MURAKAWA H, LIANG W. Numerical simulation of welding distortion in large structures [J]. Computer Methods in Applied Mechanics & Engineering, 2007, 196(45/48): 4613-4627. [9]LEE J M, SEO H D, CHUNG H. Efficient welding distortion analysis method for large welded structures [J]. Journal of Materials Processing Technology, 2018, 256: 36-50. [10]LEE D, KWON K E, LEE J, et al. Tolerance analysis considering weld distortion by use of pregenerated database [J]. Journal of Manufacturing Science and Engineering, 2009, 131(4): 041012. [11]PAHKAMAA A, WRMEFJORD K, KARLSSON L, et al. Combining variation simulation with welding simulation for prediction of deformation and variation of a final assembly [J]. Journal of Computing and Information Science in Engineering, 2012, 12(2): 021002-021007. [12]LORIN S, CROMVIK C, EDELVIK F, et al. Variation simulation of welded assemblies using a thermo-elastic finite element model [J]. Journal of Computing and Information Science in Engineering, 2014, 14(3): 031003. [13]LORIN S, CROMVIK C, EDELVIK F, et al. Simulation of non-nominal welds by resolving the melted zone and its implication to variation simulation[C]//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, USA: ASME, 2014: V004T06A018. [14]WRMEFJORD K, SDERBERG R, ERICSSON M, et al. Welding of non-nominal geometries-physical tests [J]. Procedia CIRP, 2016, 43: 136-141. [15]RENZI C, PANARI D, LEALI F. Predicting tolerance on the welding distortion in a thin aluminum welded T-joint [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5/8): 2479-2494. [16]汪建华, 陆皓, 魏良武. 固有应变有限元法预测焊接变形理论及其应用[J]. 焊接学报, 2002, 23(6): 36-40. WANG Jianhua, LU Hao, WEI Liangwu. Prediction of welding distortions based on theory of inherent strain by FEM and its application [J]. Transactions of the China Welding Institution, 2002, 23(6): 36-40. [17]李红涛, 宋绪丁. 不同热源模型对Q345中厚板焊接温度场的影响[J]. 热加工工艺, 2017, 46(23): 205-209. LI Hongtao, SONG Xuding. Influence of different heat source models on welding temperature field of Q345 medium plate [J]. Hot Working Technology, 2017, 46(23): 205-209.
文章导航

/