为了提高铝合金2024-O的旋压成形性能,通过试验研究了2种法兰约束(单边和双边)条件下杯形件的极限旋压比,并通过数值模拟研究了单边和双边法兰约束旋压成形中工艺参数对构件厚度的影响.结果表明:相对于传统的自由边旋压成形工艺,法兰约束旋压成形工艺可以提高极限旋压比,并且双边法兰约束比单边法兰约束的效果更佳;在相同的工艺条件下,双边法兰约束的构件壁厚比单边法兰约束的构件壁厚更均匀;在法兰约束的旋压成形中,板料与托辊(或旋轮端面)间的摩擦系数对构件壁厚几乎没有影响;随着旋轮端面与托辊的约束界面间隙增加,双边法兰约束的构件壁厚先减小,而后增大并趋于稳定.
In order to improve the spin-ability of AA2024-O, the limiting spinning ratios under the two different flange constraints (the single-side, the double-side) in a cup-shaped spinning were experimentally studied. In addition, the influence of the process parameters on the thickness of the spun part in single-side and double-side flange constraint spinning processes was analyzed by numerical simulation. The results show that the flange constraint method can increase the limiting spinning ratio compared with conventional spinning, and the double-side flange constraint method can increase more than the single-side flange constraint method; the thickness uniformity of the spun part in the double-side flange constraint forming is better than that in the single-side flange constraint spinning under the same conditions. At the same time, the friction coefficient at the blank-roller interfaces has little effect on thickness in the flange constraint methods, and the thickness first decreases and then stabilizes with increasing of the gap value between the blank and rollers in the double-side flange constraint spinning.
[1]XIA Q, SHIMA S, KOTERA H, et al. A study of the one-path deep drawing spinning of cups [J]. Journal of Materials Processing Technology, 2005, 159(3): 397-400.
[2]XIA Q X, ZHANG S B, XIAO-YU W U, et al. Numerical simulation and experimental investigation on one-path deep drawing spinning of conical part [J]. Forging & Stamping Technology, 2010, 35(1): 44-48.
[3]杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10): 2534-2550.
YANG He, ZHAN Mei, LI Tian, et al. Advances in spinning of aluminum alloy large-sized complicated thin-walled shells[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2534-2550.
[4]吴统超, 詹梅, 蒋华兵, 等. 旋压间隙对大型复杂薄壁壳体多道次旋压中第二道次成形质量的影响[J]. 西北工业大学学报, 2011, 29(1): 74-81.
WU Tongchao, ZHAN Mei, JIANG Huabing, et al. Influence of clearance for forming quality of second pass for large complicated thin-walled shells in multi-pass spinning [J]. Journal of Northweatern Polytechnical University, 2011, 29(1): 74-81.
[5]宋晓飞, 詹梅, 蒋华兵, 等. 铝合金大型复杂薄壁壳体多道次旋压缺陷形成机理[J]. 塑性工程学报, 2013, 20(1): 31-36.
SONG Xiaofei, ZHAN Mei, JIANG Huabing, et al. Forming mechanism of defects in spinning of large complicated thin-walled aluminum alloy shells [J]. Journal of Plasticity Engineering, 2013, 20(1): 31-36.
[6]WANG L, LONG H. Investigation of material deformation in multi-pass conventional metal spinning [J]. Materials & Design, 2011, 32(5): 2891-2899.
[7]WANG L, LONG H. A study of effects of roller path profiles on tool forces and part wall thickness variation in conventional metal spinning[J]. Journal of Materials Processing Technology, 2011, 211(12): 2140-2151.
[8]WANG L. Analysis of material deformation and wrinkling failure in conventional metal spinning process [D]. England: Durham University, 2012.
[9]KONG Q S, YU Z Q, ZHAO Y X, et al. Theoretical prediction of flange wrinkling in first-pass conventional spinning of hemispherical part[J]. Journal of Materials Processing Technology, 2016, 246: 56-68.
[10]史敏, 赵亦希, 孔庆帅, 等. 薄壁铝合金封头挡板辅助旋压成形方法[J]. 上海交通大学学报, 2015, 49(10): 1497-1503.
SHI Min, ZHAO Yixi, KONG Qingshuai, et al. Baffle-assistan new spinning process for thin-walled aluminum alloy vessel head [J]. Journal of Shanghai Jiao Tong University, 2015, 49(10): 1497-1503.
[11]AHMED K I, GADALA M S, EL-SEBAIE M G. Deep spinning of sheet metals [J]. International Journal of Machine Tools and Manufacture, 2015, 97: 72-85.
[12]詹梅, 李虎, 杨合, 等. 大型复杂薄壁壳体多道次旋压过程中的壁厚变化[J]. 塑性工程学报, 2008, 15(2): 115-121.
ZHAN Mei, LI Hu, YANG He, et al. Thickness variation in Multi-pass spinning process of large-sized complicated thin-walled shells [J]. Journal of Plasti-city Engineering, 2008, 15(2): 115-121.
[13]LONG H, HAMILTON S. Simulation of effects of material deformation on thickness variation in conventional spinning [C]∥International Conference on Technology of Plasticity. South Korea: ICTP, 2008.
[14]AUER C, ERDBRGGE M, GBEL R. Comparison of multivariate methods for robust parameter design in sheet metal spinning [J]. Applied Stochastic Models in Business and Industry, 2004, 20(3): 201-218.
[15]RAZAVI H, BIGLARI F R, TORABKHANI A. Study of strains distribution in spinning process using FE simulation and experimental work [C]∥Tehran International Congress on Manufacturing Engineering. Tehran, Iran: TICME, 2005.
[16]高晶, 刘克素, 于忠奇, 等. 双相钢板成形界面压力数值仿真及对板料表面损伤影响[J]. 上海交通大学学报, 2013, 47(5): 770-774
GAO Jing, LIU Kesu, YU Zhongqi, et al. Numerical analysis for contact pressure and surface damage in dual-phase steel sheet stamping [J]. Joural of Shanghai Jiao Tong University, 2013, 47(5): 770-774.