学报(中文)

合成生物学新技术在基因表达精确调控和提高脂肪酸合成效率方面的应用

展开
  • 上海交通大学 Bio-X研究院 SJTU-BioX-Shanghai国际基因工程机器大赛团队,上海 200240
王毓舒(1986-),女,江苏省南京市人,助理实验师,从事合成生物学研究.

网络出版日期: 2019-01-28

基金资助

国家自然科学基金(No. 31671504)

The Application of Novel Synthetic Biology Technology in Precisely Regulating Gene Expression and Promoting the Efficiency of Fatty Acid Biosynthesis

Expand
  • SJTU-BioX-Shanghai iGEM Team, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2019-01-28

摘要

基因表达是生物体最重要的生理活动之一,而对基因表达进行精确的人工调控则是控制生物体蛋白合成以及生理活动的重要手段.上海交通大学国际基因工程机器大赛(International Genetically Engineered Machine Competition, iGEM)团队自2009年参赛以来,多次应用合成生物学方法成功创建了稀有密码子开关、细胞膜支架和光控CRISPR干扰(CRISPRi)系统3种新型基因调控元件.通过在目的基因的起始密码子后插入合适数量的稀有密码子,对基因表达进行精确调节,调控一个多酶体系在最适化学计量比上进行反应;细胞膜支架可将目标蛋白固定在细胞内膜上,缩短不同蛋白之间的空间距离,加速酶催化反应速率;光控CRISPRi系统则创新性地将生物感光系统与新兴的CRISPRi技术相结合,通过光信号在转录水平上精确调控生物体内源基因的表达.这3项新技术在大肠杆菌脂肪酸合成方面均得到了成功的应用,从而提高了脂肪酸的合成量和分泌效率.

本文引用格式

王毓舒, 贺林, 马钢 . 合成生物学新技术在基因表达精确调控和提高脂肪酸合成效率方面的应用[J]. 上海交通大学学报, 2019 , 53(1) : 1 -10 . DOI: 10.16183/j.cnki.jsjtu.2019.01.001

Abstract

Gene expression is one of the most essential activities in life, so exerting the accurate artificial regulation on gene expression is an important method to manipulate protein synthesis and physiological activity. The International Genetically Engineered Machine Competition (iGEM) team from Shanghai Jiao Tong University has exploited three types of innovative genetic regulatory devices based on the concept of synthetic biology since the first participation in 2009, including rare codon switch, membrane scaffold and light-controlled CRISPR interference (CRISPRi) system. By inserting an appropriate number of rare codon right after the start codon of target genes, the precise regulation of gene expression can be achieved so as to manipulate the reaction of a multi-enzyme system in its optimal stoichiometric ratio. Membrane scaffold can anchor target proteins on the cell inner membrane, which shortens the space distance between different proteins, and accelerates the enzymatic reaction rate, while light-controlled CRISPRi system has innovatively combined biological light sensor and emerging CRISPRi technique to achieve the precise regulation of endogenous genes expression on transcriptional level through light signal. These new technologies have favorable applications in improving the fatty acid synthesis and secretion efficiency in Escherichia coli.

参考文献

[1]SHAO J W, XUE S, YU G L, et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice[J]. Science Translational Medicine, 2017, 9(387): eaal22989. [2]DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759. [3]SWOFFORD C A, VAN DESSEL N, FORBES N S. Quorum-sensing Salmonella selectively trigger protein expression within tumors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3457-3462. [4]UTHOFF S, BROKER D, STEINBUCHEL A. Current state and perspectives of producing biodiesel-like compounds by biotechnology[J]. Microbial Biotechnology, 2009, 2(5): 551-565. [5]LI H, CANN A F, LIAO J C. Biofuels: Biomolecular engineering fundamentals and advances[J]. Annual Review of Chemical and Biomolecular Engineering, 2010, 1: 19-36. [6]SCHIRMER A, RUDE M A, LI X Z, et al. Microbial biosynthesis of alkanes[J]. Science, 2010, 329(5991): 559-562. [7]NAWABI P, BAUER S, KYRPIDES N, et al. Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase[J]. Applied and Environmental Microbiology, 2011, 77(22): 8052-8061. [8]AKHTAR M K, TURNER N J, JONES P R. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 87-92. [9]LENNEN R M, PFLEGER B F. Engineering Escherichia coli to synthesize free fatty acids[J]. Trends in Biotechnology, 2012, 30(12): 659-667. [10]PRATHER K L, MARTIN C H. De novo biosynthetic pathways: Rational design of microbial chemical factories[J]. Current Opinion in Biotechnology, 2008, 19(5): 468-474. [11]NA D, KIM T Y, LEE S Y. Construction and optimization of synthetic pathways in metabolic engineering[J]. Currrent Opinion in Microbiology, 2010, 13(3): 363-370. [12]CHEN G T, INOUYE M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli[J]. Genes & Development, 1994, 8(21): 2641-2652. [13]KANAYA S, YAMADA Y, KINOUCHI M, et al. Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis[J]. Journal of Molecular Evolution, 2001, 53(4/5): 290-298. [14]LAKEY D L, VOLADRI R K, EDWARDS K M, et al. Enhanced production of recombinant Mycobacterium tuberculosis antigens in Escherichia coli by replacement of low-usage codons[J]. Infection and Immunity, 2000, 68(1): 233-238. [15]STENSTROM C M, JIN H N, MAJOR L L, et al. Codon bias at the 3′-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli[J]. Gene, 2001, 263(1/2): 273-284. [16]THANGADURAI C, SUTHAKARAN P, BARFAL P, et al. Rare codon priority and its position specificity at the 5′ of the gene modulates heterologous protein expression in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 2008, 376(4): 647-652. [17]ZHANG L Q, XUE P, ZHANG H J. Overexpression in Escherichia coli, purification and characterization of Thermoanaerobacter tengcongensis elongation factor G with multiple rare codons[J]. Protein and Peptide Letters, 2007, 14(8): 804-810. [18]WANG Y, LI C Y, KHAN M R I, et al. An engineered rare codon device for optimization of metabolic pathways[J]. Scientific Reports, 2016, 6: 20608. [19]YU X Y, LIU T G, ZHU F Y, et al. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(46): 18643-18648. [20]LEE H, DELOACHE W C, DUEBER J E. Spatial organization of enzymes for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 242-251. [21]BAEK J M, MAZUMDAR S, LEE S W, et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10): 2790-2794. [22]HIRAKAWA H, HAGA T, NAGAMUNE T. Artificial protein complexes for biocatalysis[J]. Topics in Catalysis, 2012, 55(16/17/18): 1124-1137. [23]PROSCHEL M, DETSCH R, BOCCACCINI A R, et al. Engineering of metabolic pathways by artificial enzyme channels[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 1-13. [24]WANG Y, WU Y Q, SUO Y, et al. Clustering enzymes using E.coli inner cell membrane as scaffold in metabolic pathway[EB/OL]. (2017-12-25) [2018-04-15]. https://doi.org/10.1101/230425. [25]PAILLER J, AUCHER W, PIRES M, et al. Phosphatidylglycerol: Prolipoprotein Diacylglyceryl Transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane[J]. Journal of Bacteriology, 2012, 194(9): 2142-2151. [26]SCHIERLE C F, BERKMEN M, HUBER D, et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway[J]. Journal of Bacteriology, 2003, 185(19): 5706-5713. [27]SKRETAS G, GEORGIOU G. Simple genetic selection protocol for isolation of overexpressed genes that enhance accumulation of membrane-integrated human G protein-coupled receptors in Escherichia coli[J]. Applied and Environmental Microbiology, 2010, 76(17): 5852-5859. [28]AFRIN S,KHAN M R I,ZHANG W Y, et al. Membrane-located expression of thioesterase from Acinetobacter baylyi enhances free fatty acid production with decreased toxicity in Synechocystis sp. PCC6803[J]. Frontiers in Microbiology, 2018, 9: 02842. [29]GUO H S, FEI J F, XIE Q, et al. A chemical-regulated inducible RNAi system in plants[J]. The Plant Journal, 2003, 34(3): 383-392. [30]KONERMANN S, BRIGHAM M D, TREVINO A, et al. Optical control of mammalian endogenous transcription and epigenetic states[J]. Nature, 2013, 500(7463): 472-476. [31]OHLENDORF R, VIDAVSKI R R, ELDAR A, et al. From dusk till dawn: One-plasmid systems for light-regulated gene expression[J]. Journal of Molecular Biology, 2012, 416(4): 534-542. [32]QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. [33]WU H, WANG Y, WANG Y, et al. Quantitatively relating gene expression to light intensity via the serial connection of blue light sensor and CRISPRi[J]. ACS Synthetic Biology, 2014, 3(12): 979-982.
文章导航

/