采用溶胶凝胶一步法分别制备了碱一步催化和酸一步催化的纯SiO2溶胶.通过对2组样品的透射率和耐磨性能进行测试和对比分析,给出了碱、酸催化对薄膜性能的影响规律,并对催化机理进行了研究.碱催化的单层薄膜透过率最高可达到 98.781%,而酸催化的单层薄膜透过率为 95.285%,说明碱催化能得到透射性能更高的薄膜.碱薄膜的机械性能较差,而酸薄膜机械性能好,给出了疏水耐磨薄膜作用机制.通过测量表面处理前后薄膜的水接触角发现,改性后碱薄膜水接触角值达 126.5°,酸薄膜水接触角值为 94.5°.结果表明,经过表面处理能显著提高薄膜疏水性能,是一种简易、经济、高效的得到疏水薄膜的方法.
In this paper, we have developed base-catalyzed and acid-catalyzed approach of pure SiO2 sols by one-pot sol-gel method, respectively. Through the test and comparison of the transmittance and the wear resistance of the two groups of samples, the effect of alkali and acid catalysis on the performance of the film was put forward, and the catalytic mechanism was analyzed. Base catalyst monolayer film transmission can be as high as 98.781%, while the acid catalyst is 95.285%. This shows that the base catalyst can get films with higher transmittance. The mechanical property of the alkali film is poor, while the mechanical properties of the acid film are good, and the mechanism of hydrophobic wear-resistant film is given. By measuring surface water contact angles of the films before and after surface treatment we found that alkali film and acid film water contact angle can reach 126.5° and 94.5°, respectively. The result shows that the hydrophobic performance of films can be improved obviously after surface treatment.
[1]张秀清, 李艳红, 张超. 太阳能电池研究进展[J]. 中国材料进展, 2014(7): 436-441.
ZHANG Xiuqing, LI Yanhong, ZHANG Chao. Research progress on solar cell[J]. Materials China, 2014(7): 436-441.
[2]都玲玲, 沙莎. 太阳能电池的研究现状及发展趋势[J]. 卷宗, 2013(4): 114.
DU Lingling, SHA Sha. Research status and deve-lopment trend of solar cells[J]. Juanzong, 2013(4): 114.
[3]王昌浩. 纳米技术在太阳能电池中的应用展望[J]. 石油石化节能, 2016, 6(5): 18-20.
WANG Changhao. Application prospect of nanotechnology in solar cells[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2016, 6(5): 18-20.
[4]DOU W, WANG P, ZHANG D, et al. An efficient way to prepare hydrophobic antireflective SiO2 film by sol-gel method[J]. Materials Letters, 2016, 167: 69-72.
[5]LARI N, AHANGARANI S, SHANAGHI A. Effect of different TiO2-SiO2 multilayer coatings applied by sol-gel method on antireflective property[J]. Journal of Materials Engineering & Performance, 2015, 24(7): 2645-2652.
[6]胡腾, 叶龙强, 李文玲, 等. 具有光催化性能的TiO2-SiO2/TiO2两层增透膜的设计与制备[J]. 无机化学学报, 2014, 30(8): 1778-1782.
HU Teng, YE Longqiang, LI Wenling, et al. Pre-paration and characterization of TiO2-SiO2/TiO2 two-layer antireflective coatings photo-catalyst[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(8): 1778-1782.
[7]张翠, 李绍纯, 金祖权, 等. 硅溶胶的制备及其影响因素[J]. 科技视界, 2015(5): 42-44.
ZHANG Cui, LI Shaochun, JIN Zuquan, et al. Preparation of silica sol and its influencing factors[J]. Science and Technology Vision, 2015(5): 42-44.
[8]李春华, 姜宏, 赵会峰, 等. 溶胶-凝胶法制备纳米多孔二氧化硅减反膜的研究进展[J]. 玻璃与搪瓷, 2014, 42(4): 42-46.
LI Chunhua, JIANG Hong, ZHAO Huifeng, et al. Progress in nano porous silica antireflective (AR) film prepared by sol-gel[J]. Glass and Enamel, 2014, 42(4): 42-46.
[9]黄玉萍, 阙永生, 汪海风, 等. 溶胶凝胶法制备多孔SiO2减反射膜结构和性能研究[J]. 稀有金属材料与工程, 2016(S1): 12-15.
HUANG Yuping, QUE Yongsheng, WANG Haifeng, et al. Research on properties and structure of porous SiO2 anti-reflection coating by sol-gel method[J]. Rare Metal Materials and Engineering, 2016(S1): 12-15.
[10]刘洋, 张毅, 李东旭. 常压干燥制备疏水性SiO2气凝胶[J]. 功能材料, 2015, 46(5): 5132-5135.
LIU Yang, ZHANG Yi, LI Dongxu. Preparation of hydrophobic silica aerogels by ambitient pressure drying method[J]. Journal of Functional Materials, 2015, 46(5): 5132-5135.
[11]杨宁宁, 雅菁, 胡凤娇, 等. 不同基底对TiO2和SiO2薄膜的光学性能的影响[J]. 无机化学学报, 2015, 31(7): 1315-1320.
YANG Ningning, YA Jing, HU Fengjiao, et al. Effects of different substrates on the optical properties of TiO2 and SiO2 films[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(7): 1315-1320.
[12]郭思彤, 吴会军, 杨丽修, 等. 制备参数对SiO2气凝胶结构与性能影响的研究进展[J]. 材料导报, 2017, 31(7): 38-44.
GUO Sitong, WU Huijun, YANG Lixiu, et al. Influence of Preparation parameters on structure and performance of silica aerogel: A review[J]. Materials Review, 2017, 31(7): 38-44.
[13]MENG X H, WANG Y, WANG H N, et al. Preparation of hydrophobic and abrasion-resistant silica antireflective coatings by using a cationic surfactant to regulate surface morphologies[J]. Solar Energy, 2014, 101(1): 283-290.
[14]KAMINSKI P M, WOMACK G, WALLS J M. Broadband anti-reflection coatings for thin film photovoltaics[C]. Photovoltaic Specialist Conference, 2014: 2778-2783.
[15]WANG N, XIONG D S. Comparison of micro-/nano-hierarchical and nano-scale roughness of silica membranes in terms of wetting behavior and transparency[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 446: 8-14.
[16]CAI S, ZHANG Y L, ZHANG H L. et al. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. Acs Appl Mater Interfaces, 2014, 6(14): 11470-11475.
[17]WEI Q, LI J L, SONG C L, et al. Preparation, characterization and hydrothermal stability of hydrophobic methyl-modified silica membranes[J]. Journal Inorganic Materials, 2004, 19(2): 417-423.