为深入了解螺栓抗弯刚度对T型连接初始抗弯刚度的影响,探讨了现阶段T型连接刚度的不同理论计算方法,并分析了不同计算方法的优缺点;在此基础上,采用连续梁模型导出了考虑螺栓抗弯刚度的T型连接初始刚度计算公式;将公式计算结果与可靠的有限元模型计算结果进行对比,验证了公式的正确性;进而对影响T型连接初始刚度的翼缘厚度和螺栓位置进行了参数分析,得到了不同参数的影响规律.研究结果表明:随着翼缘厚度的减小和螺栓轴线至翼缘边缘距离的增大,螺栓抗弯刚度对T型连接初始刚度的影响增大;对于普通钢T型连接,考虑螺栓抗弯刚度时T型连接初始刚度的计算结果较不考虑时提高的幅度不足5%;但对于高强钢T型连接,考虑螺栓抗弯刚度的计算结果较不考虑时提高约30%.因此,对于高强钢T型连接,计算其初始刚度时,不可忽略螺栓的抗弯刚度.
In order to reveal more information on initial stiffness of T-stubs, a brief introduction on calculative methods for predicting mechanical behaviors of T-stubs was firstly presented . Though comparing these methods, the continuous beam model which bending stiffness of bolts are considered was determined to calculate initial stiffness of T-stubs. Comparisons between theoretical and numerical results on initial bending stiffness of a series of T-stubs are presented and good agreements exist. Further, parametric analysis was conducted mainly on flange thicknesses and locations of bolts of T-stubs. The parametric analysis results show that with increase of flange thicknesses the distance between axis of bolts and edges of flange decreases, the influence of bending stiffness on initial stiffness of T-stubs increases. For mild steel T-stubs, when bending stiffness of bolts is considered, initial stiffness improve less than 5%. But for high strength steel (HSS) T-stubs, initial stiffness improves even more than 30%. Thus for HSS T-stubs, bending stiffness of bolts cannot be neglected when calculated initial stiffness of T-stubs.
[1]陈颖智, 童乐为, 陈以一. 组件法用于钢结构节点性能分析的研究进展[J]. 建筑科学与工程学报, 2012, 29(3): 81-89.
CHEN Yingzhi, TONG Leiwei, CHEN Yiyi. Research developments of component method for behavior of joints in steel structures[J]. Journal of Architecture and Civil Engineering, 2012, 29(3): 81-89.
[2]STAMATOPOULOS G N, ERMOPOULOS J C. Influence of the T-stub flexibility on its strength[J]. International Journal of Steel Structures, 2010, 10(1): 73-79.
[3]COELHO A M G, BIJLAARD F S K, GRESNIGT N, et al. Experimental assessment of the behaviour of bolted T-stub connections made up of welded plates[J]. Journal of Constructional Steel Research, 2004, 60(2): 269-311.
[4]王素芳, 陈以一. T形件连接初始刚度的理论计算模型[J]. 工业建筑, 2007, 37(10): 80-83.
WANG Sufang, CHEN Yiyi. Theoretical model for the initial stiffness of bolted T-stub connections[J]. Industrial Construction, 2007, 37(10): 80-83.
[5]吴兆旗, 张素梅, 姜绍飞. 梁柱端板连接节点初始转动刚度计算模型[J]. 工程力学, 2009, 26(6): 226-232.
WU Zhaoqi, ZHANG Sumei, JIANG Shaofei. Calculation model of initial rotational stiffness of steel beam-to-column bolted end-plate connections[J]. Engineering Mechanics, 2009, 26(6): 226-232.
[6]施刚, 石永久, 王元清. 钢结构梁柱半刚性端板连接弯矩-转角全曲线计算方法[J]. 工程力学, 2006, 23(5): 67-73.
SHI Gang, SHI Yongjiu, WANG Yuanqing. Calculation method on moment-rotation curves of beam-to-column semirigid end-plate connections[J]. Engineering Mechanics, 2006, 23(5): 67-73.
[7]YEE Y L, MELCHERS R E. Moment-rotation curves for bolted connections[J]. Journal of Structural Engineering, 1986, 112(3): 615-635.
[8]李国强, 石文龙, 王静峰. 半刚性连接钢框架结构设计[M]. 北京: 中国建筑工业出版社, 2009: 75-80.
LI Guoqiang, SHI Wenlong, WANG Jingfeng. Design of steel frames with semi-rigid connections[M]. Beijing: China Architecture and Building Press, 2009: 75-80.
[9]European Committee for Standardization. Eurocode 3: Design of steel structures—Part 1—8: Design of joints: EN 1993-1-8[S]. Brussels: CEN, 2005.
[10]中国建筑标准设计研究院. 门式钢架轻型房屋钢结构技术规程: CECS 102: 2002[S]. 北京: 中国计划出版社, 2003: 40-43.
China Institute of Building Standard Design and Research. Technical specification for steel structure of light-weight buildings with gabled frames: CECS 102: 2002 [S]. Beijing: China Planning Press, 2003: 40-43.
[11]施刚, 班慧勇, 石永久, 等. 高强度钢材钢结构研究进展综述[J]. 工程力学, 2013, 30(1): 1-13.
SHI Gang, BAN Huiyong, SHI Yongjiu, et al. Overview of research progress for high strength steel structures[J]. Engineering Mechanics, 2013, 30(1): 1-13.
[12]强旭红, 武念铎, 罗永峰, 等. 全高强钢端板节点火灾后性能试验[J]. 同济大学学报, 2017, 45(2): 173-179..
QIANG Xuhong, WU Nianduo, LUO Yongfeng, et al. Experimental research on post-fire behavior of full high strength steel endplate connections[J]. Journal of Tongji University, 2017, 45(2): 173-179.
[13]QIANG X H, BIJLAARD F S K, KOLSTEIN H, et al. Behaviour of beam-to-column high strength steel endplate connections under fire conditions—Part 1: Experimental study[J]. Engineering Structures, 2014, 64(1): 23-38.
[14]QIANG X H, BIJLAARD F S K, KOLSTEIN H, et al. Behaviour of beam-to-column high strength steel endplate connections under fire conditions—Part 2: Numerical study[J]. Engineering Structures, 2014, 64(1): 39-51.
[15]QIANG X H, JIANG X, BIJLAARD F S K, et al. Post-fire behaviour of high strength steel endplate connections — Part 1: Experimental study[J]. Journal of Constructional Steel Research, 2015, 108: 82-93.
[16]QIANG X H, JIANG X, BIJLAARD F S K, et al. Post-fire behaviour of high strength steel endplate connections — Part 2: Numerical study[J]. Journal of Constructional Steel Research, 2015, 108: 94-102.
[17]European Committee for Standardization. Eurocode 3: Design of steel structures—Part 1—2: General rules-structural fire design: EN 1993-1-2[S]. Brussels: CEN, 2005.
[18]施刚, 石永久, 王元清. 钢框架梁柱端板连接的非线性有限元分析[J]. 工程力学, 2008, 25(12): 79-85.
SHI Gang, SHI Yongjiu, WANG Yuanqing. Nonlinear finite element analysis of end-plate connections in steel frames[J]. Engineering Mechanics, 2008, 25(12): 79-85.