学报(中文)

深埋圆形隧洞围岩各向异性稳态渗流场解析解

展开
  • 1. 浙江大学 滨海和城市岩土工程研究中心, 杭州 310058; 2. 华东交通大学 土木建筑学院, 南昌 330013; 3. 江西省岩土工程基础设施安全与控制重点实验室, 南昌 330013; 4. 浙江省工业设计研究院, 杭州 310052
徐长节(1972-),男,安徽省潜山县人,教授,主要从事隧道工程、基坑工程以及土动力学方面的研究. 电话(Tel.):0571-88206752;E-mail:xucj@zju.edu.cn.

基金资助

国家重点基础研究发展计划(973)项目(2015CB057801),国家自然科学基金资助项目(51238009,51338009)

Analytical Solutions on Steady Seepage Field of Deep Buried Circular Tunnel After Considering Anisotropic Flow

Expand
  • 1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China; 3. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, Nanchang 330013, China; 4. Zhejiang Industry Design & Research Institute, Hangzhou 310052, China

摘要

在传统各向同性渗流的深埋圆形隧洞渗流场解析解的基础上,引入2个相互垂直方向上的渗透系数比,通过坐标变换以及共形映射的方法,推导了各向异性渗流情况下深埋圆形隧洞的渗流场解析解.参数分析结果表明:当渗透系数比等于1时,所得解退化为各向同性渗流圆形隧洞渗流场解析解;当渗透系数比不等于1时,圆形隧洞渗流场等水头线为椭圆形,渗透系数较小的方向水力坡降较大,渗流场不再均匀分布,但是随着与隧洞中心距离的增大,这种不均匀性逐渐减弱.该解析解的计算结果与数值模拟的结果完全吻合,从而验证了其正确性.研究成果可供相关工程参考借鉴.

本文引用格式

徐长节1,2,3,梁禄钜1,丁文湘4 . 深埋圆形隧洞围岩各向异性稳态渗流场解析解[J]. 上海交通大学学报, 2018 , 52(12) : 1565 -1570 . DOI: 10.16183/j.cnki.jsjtu.2018.12.004

Abstract

Based on traditional analytical solutions of deep buried circular tunnel’s seepage field under isotropic seepage condition, a seepage coefficient ratio was introduced and analytical solutions of deep buried circular tunnel’s seepage field under anisotropic seepage condition was derived through coordinate transformation and conformal mapping. Results of parameter analysis indicate that the solutions could degenerate to the classical solutions under isotropic seepage condition when the seepage coefficient ratio is equal to 1. On the other hand, when the seepage coefficient ratio was not equal to 1, equal headlines of the circular tunnel’s seepage field were ellipses and hydraulic gradient on the direction of smaller seepage coefficient was larger than the other direction, which means the distribution of seepage field was inhomogeneous. However, this inhomogeneity weakened gradually with longer distance to the center of the circular tunnel. The calculation results of these analytical solutions are all in agreement with numerical analysis results, which confirmed the effectiveness of the proposed analytical solutions. The research results can provide a reference for relevant projects.

参考文献

[1]LEI S Z. An analytical solution for steady flow into a tunnel[J]. Ground Water, 1999, 37(1): 23-25. [2]TANI M E. Circular tunnel in a semi-infinite aquifer[J]. Tunnelling & Underground Space Technology, 2003, 18(1): 49-55. [3]WANG X Y, TAN Z S, WANG M S, et al. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level[J]. Tunnelling & Underground Space Technology, 2008, 23(5): 552-560. [4]李鹏飞, 张顶立, 赵勇, 等. 海底隧道复合衬砌水压力分布规律及合理注浆加固圈参数研究[J]. 岩石力学与工程学报, 2012, 31(2): 280-288. LI Pengfei, ZHANG Dingli, ZHAO Yong, et al. Study of distribution law of water pressure acting on composite lining and reasonable parameters of grouting circles for subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 280-288. [5]KOLYMBAS D, WAGNER P. Groundwater ingress to tunnels: The exact analytical solution[J]. Tunnelling & Underground Space Technology, 2007, 22(1): 23-27. [6]PARK K H, OWATSIRIWONG A, LEE J G. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: A revisit[J]. Tunnelling & Underground Space Technology, 2008, 23(2): 206-209. [7]PARK K H, LEE J G, OWATSIRIWONG A. Seepage force in a drained circular tunnel: An analytical approach[J]. Canadian Geotechnical Journal, 2008, 45(3): 432-436. [8]MING H F, WANG M S, TAN Z S, et al. Analytical solutions for steady seepage into an underwater circular tunnel[J]. Tunnelling & Underground Space Technology, 2010, 25(4): 391-396. [9]应宏伟, 朱成伟, 龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版), 2016, 50(6): 1018-1023. YING Hongwei, ZHU Chengwei, GONG Xiaonan. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023. [10]杨林德, 杨志锡. 各向异性饱和土体的渗流耦合分析和数值模拟[J]. 岩石力学与工程学报, 2002, 21(10): 1447-1451. YANG Linde, YANG Zhixi. Coupling analyses and numerical simulation on seepage flow in anisotropic saturated soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1447-1451. [11]原华, 张庆贺, 胡向东, 等. 大直径越江盾构隧道各向异性渗流应力耦合分析[J]. 岩石力学与工程学报, 2008, 27(10): 2130-2137. YUAN Hua, ZHANG Qinghe, HU Xiangdong, et al. Analysis of coupling anisotropic seepage and stress of large diameter river-crossing shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2130-2137. [12]胡正, 杨仲轩, 徐长节, 等. 渗流条件下各向异性土主动土压力计算方法[C]∥第八届中日盾构隧道技术交流会论文集A册. 南京, 河海大学出版社, 2015: 94-101. HU Zheng, YANG Zhongxuan, XU Changjie, et al. Study on active earth pressure of anisotropic soil with seepage[C]∥The Eighth China-Japan Conference on Shield Tunneling (Series A). Nanjing: Hohai University Press, 2015: 94-101. [13]KONG G Q, ZHOU H, CAO Z H, et al. Analytical solution for pressure-controlled elliptical cavity expansion in elastic-perfectly plastic soil[J]. Géotechnique Letters, 2014, 4(2): 72-78. [14]李宗利, 任青文, 王亚红. 考虑渗流影响深埋圆形隧洞的弹塑性解[J]. 岩石力学与工程学报, 2004, 23(8): 1291-1295. LI Zongli, REN Qingwen, WANG Yahong. Elasto-plastic analytical solution of deep-buried circle tunnel considering fluid flow field[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1291-1295. [15]LI P F, FANG Q, ZHANG D L. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
Options
文章导航

/