在冰风洞中开展了结冰条件下NACA0012翼型的流向和展向分布等离子体射流防冰性能对比实验.设计加工了基于介质阻挡放电技术的流向和展向分布等离子体射流激励器并粘接于翼型表面,热电偶巧妙埋设于激励器下方以检测防冰效果.结果表明,展向分布等离子体射流激励器在裸露电极上方无法生成等离子体射流,故而会有明冰生成,防冰效果较差,而流向分布激励器在来流的作用下能够部分弥补这一缺陷,具有更好的防冰效果.
The anti-icing performances of streamwise and spanwise plasma jet actuators fixed on NACA0012 are compared in the icing wind tunnel. Streamwise and spanwise actuators are designed and installed on the model surface, and thermocouples are specially embedded beneath the actuator to detect the anti-icing effects. Experiment results indicate that the spanwisely installed actuator cannot generate plasma jets due to the installation position being above the exposed electrode, leading to icing and thus a poor performance of anti-icing, while the streamwisely installed actuator realizes anti-icing by contrast.
[1]王晋, 纪双英, 益小苏, 等. 飞行器防/除冰技术研究进展[J]. 航空制造技术, 2015, 495(S2): 30-32.
WANG Jin, JI Shuangying, YI Xiaosu, et al. Progress of the aircraft anti-icing/de-icing[J]. Aeronautical Manufacturing Technology, 2015, 495(S2): 30-32.[2]董葳, 侯玉柱, 闵现花. 进口导向叶片热气防冰系统试验[J]. 上海交通大学学报, 2010, 44(11): 1579-1582.
DONG Wei, HOU Yuzhu, MIN Xianhua. Experi-mental study of hot air anti-icing system of inlet guide vane[J]. Journal of Shanghai Jiao Tong University, 2010, 44(11): 1579-1582.
[3]DONG W, ZHU J, ZHENG M, et al. Experimental study on icing and anti-icing characteristics of engine inlet guide vanes[J]. Journal of Propulsion and Po-wer, 2015, 31(5): 1330-1337.
[4]肖春华, 桂业伟, 杜雁霞, 等. 电热除冰传热特性的结冰风洞实验研究[J]. 实验流体力学, 2010(4): 21-24.
XIAO Chunhua, GUI Yewei, DU Yanxia, et al. Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010(4): 21-24.
[5]张屹, 李伟鹏, 王福新, 等. 大气压下介质阻挡放电等离子体诱导起始涡的实验研究[J]. 上海交通大学学报, 2014, 48(8): 1097-1102.
ZHANG Yi, LI Weipeng, WANG Fuxin, et al. Experimental study of the starting vortex induced by atmospheric dielectric-barrier-discharge plasma[J]. Journal of Shanghai Jiao Tong University, 2014, 48(8): 1097-1102.
[6]张屹. 基于 DBD-PA 的主动流动控制实验研究[D]. 上海: 上海交通大学航空航天学院, 2014.
ZHANG Yi. The experimental studies of active flow control based on dielectric-barrier-discharge plasma[D]. Shanghai: School of Aeronautics and Astronautics, Shanghai Jiao Tong University, 2014.
[7]CARUANA D, BARRICAU P, GLEYZES C. Separation controlwith plasma synthetic jet actuators[J]. International Journal of Aerodynamics, 2013, 3(1): 71-83.
[8]BELINGER A, NAUD′E N, CAMBRONNE J P, et al. Plasmasynthetic jet actuator: Electrical and optical analysis of the discharge[J]. Journal of Physics D: Applied Physics, 2014, 47(34): 1-11.
[9]SARY G, DUFOUR G, ROGIER F, et al. Modeling andparametric study of a plasma synthetic jet for flowcontrol[J]. AIAA Journal, 2014, 52(8): 1591-1603.
[10]WANG Lin, XIA Zhixun, LUO Zhenbing, et al. Three-electrode plasma synthetic jet actuator for highspeed flow control[J]. AIAA Journal, 2014, 52(4): 879-882.