学报(中文)

基于小波支持向量机的非高斯空间风压内外插预测

展开
  • 上海大学 土木工程系, 上海 200444
李春祥 (1964-),男,安徽省舒城市人,教授,博士生导师,研究方向为风荷载模拟预测. 电话(Tel.):021-56332265; E-mail:li-chunxiang@vip.sina.com.

基金资助

国家自然科学基金资助项目(51378304)

Interpolation Prediction and Extrapolation Prediction of Non-Gaussian Spatial Wind Pressure Using LSSVM with Wavelet Kernel Function

Expand
  • Department of Civil Engineering, Shanghai University, Shanghai 200444, China

摘要

支持向量机(SVM)的性能取决于核函数及核参数的选取.基于小波分析理论构造出满足Mercer平移不变核定理的Mexican Hat小波核函数(MW),将MW和B样条核函数分别与最小二乘支持向量机(LSSVM)结合,形成MW-LSSVM和BS-LSSVM.运用粒子群(PSO)算法对MW-LSSVM和BS-LSSVM的正则化参数及核参数进行智能优化,建立了PSO-MW-LSSVM和PSO-BS-LSSVM的空间风压预测算法.实测风压预测结果表明,MW-LSSVM比BS-LSSVM和传统的径向基核函数RBF-LSSVM具有更好的非高斯风压预测性能及泛化能力,而且稳定性更强,具有较高的工程应用价值.

本文引用格式

李春祥,殷潇 . 基于小波支持向量机的非高斯空间风压内外插预测[J]. 上海交通大学学报, 2018 , 52(11) : 1516 -1523 . DOI: 10.16183/j.cnki.jsjtu.2018.11.014

Abstract

The performance of support vector machine depends on the selection of kernel functions and kernel parameters. The Mexican Hat wavelet kernel function is constructed based on the wavelet analysis theory which could satisfy the Mercer conditions. Further, the Mexican Hat wavelet kernel function and the B-spline kernel are combined with the LSSVM respectively and accordingly MW-LSSVM and BS-LSSVM are proposed. Subsequently, optimizations for penalty parameters and kernel parameters are conducted using particle swarm optimization (PSO) and thus the PSO-MW-LSSVM and PSO-BS-LSSVM algorithms are proposed for spatial wind pressure prediction. The numerical analysis shows that the proposed method not only significantly outperforms the conventional RBF-LSSVM and BS-LSSVM in forecasting accuracy and generalization ability, but also has great engineering application prospects due to its stability.

参考文献

[1]孙旭峰, BITSUAMLAK G T, 胡超. 屋盖结构脉动风压非高斯特性分析的极限流线方法[J]. 振动与冲击, 2015, 34(8): 157-162. SUN Xufeng, BITSUAMLAK G T, HU Chao. Li-miting streamline method for analysis of non-Gaussian property of roof structures’ fluctuating wind pressure[J]. Journal of Vibration and Shock, 2015, 34(8): 157-162. [2]DING J, CHEN X Z. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples[J]. Engineering Structures, 2014, 80: 75-88. [3]QU L, ZHOU H. The multi-class SVM is applied in transformer fault diagnosis[C]//International Symposium on Distributed Computing and Applications for Business Engineering and Science. Paris: IEEE, 2016: 477-480. [4]YAN X, CHOWDHURY N A. Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach[J]. International Journal of Electrical Power & Energy Systems, 2013, 53(1): 20-26. [5]SU J, WANG X, LIANG Y, et al. GA-based support vector machine model for the prediction of monthly reservoir storage[J]. Journal of Hydrologic Engineering, 2013, 19(7): 1430-1437. [6]AHMADI M A, BAHADORI A. A LSSVM approach for determining well placement and conning phenomena in horizontal wells[J]. Fuel, 2015, 153: 276-283. [7]SHANG F H, MIAO X J, WANG Z Y, et al. Automatic identifying algorithm of water-flooded zone based on B-SVM[C]//International Conference on Machine Learning and Cybernetics. Dalian: IEEE, 2006: 4035-4039. [8]王春枝, 张会丽, 叶志伟. 基于混沌粒子群算法和小波SVM的P2P流量识别方法[J]. 计算机科学, 2015, 42(10): 117-121. WANG Chunzhi, ZHANG Huili, YE Zhiwei. Peer-to-peer traffic identification method based on chaos particle swarm algorithm and wavelet SVM[J]. Computer Science, 2015, 42(10): 117-121. [9]迟恩楠, 李春祥. 基于优化组合核和Morlet小波核的LSSVM脉动风速预测方法[J]. 振动与冲击, 2016, 35 (18): 52-57. CHI Ennan, LI Chunxiang. Forecast of fluctuating wind velocity using LSSVM with optimized combination kernel and Morlet wavelet kernel[J]. Journal of Vibration and Shock, 2016, 35 (18): 52-57. [10]LIU Z, CUI Y, LI W. A classification method for complex power quality disturbances using EEMD and rank wavelet SVM[J]. IEEE Transactions on Smart Grid, 2017, 6(4): 1678-1685. [11]ZHOU J Y, JING S, GONG L. Fine tuning support vector machines for short-term wind speed forecasting[J]. Energy Conversion and Management, 2011, 52(4): 1990-1998. [12]SUBASI A. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular dis-orders[J]. Computers in Biology & Medicine, 2013, 43(5): 576-586. [13]SELAKOV A, MELLON S, BEKUT D. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank[J]. Applied Soft Computing, 2014, 16(3): 80-88. [14]李锦华, 吴春鹏, 陈水生. 矩形结构非高斯风荷载特性研究[J]. 振动、测试与诊断, 2014, 34(5): 951-959. LI Jinhua, WU Chunpeng, CHEN Shuisheng. Cha-racteristics of non-gaussian wind pressures on rectangular structure[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(5): 951-959.
Options
文章导航

/