为了探究方形竖井基坑挡墙后空间主动土压力分布规律,建立了正交挡墙三维有限元分析模型,研究了不同长高比挡墙平动时墙后主动土压力分布及空间滑裂体形状变化规律,并提出考虑挡墙长高比影响的方形基坑空间主动土压力理论计算模型,给出了深筒形基坑的定义和主动土压力合力及其作用点、挡墙中部截面土压力分布的理论公式.通过理论与数值的对比,发现两者吻合较好.研究表明:当挡墙长高比大于临界长高比时,空间滑裂体由中部的库伦主动土楔和角部的曲面体组成;当挡墙长高比小于临界长高比时,滑裂体无平直段,可定义为深筒形基坑,此时随挡墙长高比减小,主动土压力系数由库伦主动土压力系数逐渐减小,滑裂体倾角逐渐增大.
In order to study the distribution of spatial active earth pressure against retaining walls in square shaft excavations, a 3-dimensional finite element analysis model of orthogonal rigid retaining walls is established, and the distribution of spatial active earth pressure and variation of the spatial slip block against translating retaining walls with different aspect ratios are studied. A theoretical model for determining spatial active earth pressure against translating rigid retaining walls with different aspect ratios is proposed. The definition of deep shaft excavations is given. The theoretical formulae for the resultant earth pressure and its acting point and the active earth pressure in the middle section of the wall are presented. Comparing the theoretical and numerical results, it is found that the two are in good agreement. The studies indicate that the spatial slip block consists of Coulomb’s active soil wedge in the middle of the wall and object with curved surfaces in the corner when the aspect ratio of the retaining walls is larger than the critical aspect ratio. When the aspect ratio of the retaining walls is less than the critical aspect ratio, it can be defined as a deep shaft excavations whose sliding block does not have straight section. As the decrease of aspect ratio, the active earth pressure coefficient decreases gradually from the Coulomb’s solution and the sliding angle increases.
[1]SHERIF M A, FANG Y S, SHERIF R I. Ka and K0 behind rotating and nonyielding walls[J]. Journal of Geotechnical Engineering, 1984, 110(1): 41-56.
[2]FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.
[3]周应英, 任美龙. 刚性挡土墙主动土压力的试验研究[J]. 岩土工程学报, 1990, 12(2): 19-26.
ZHOU Yingying, REN Meilong. An experimental study on active earth pressure behind rigid retaining wall[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 19-26.
[4]应宏伟, 黄东, 谢新宇. 考虑邻近地下室外墙侧压力影响的平动模式挡墙主动土压力研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2970-2978.
YING Hongwei, HUANG Dong, XIE Xinyu. Study of active earth pressure on retaining wall subject to translation mode considering lateral pressure on adjacent existing basement exterior wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2970-2978.
[5]应宏伟, 郑贝贝, 谢新宇. 狭窄基坑平动模式刚性挡墙被动土压力分析[J]. 岩土力学, 2011, 32(12): 3755-3762.
YING Hongwei, ZHENG Beibei, XIE Xinyu. Study of passive earth pressures against translating rigid retaining walls in narrow excavations[J]. Rock and Soil Mechanics, 2011, 32(12): 3755-3762.
[6]TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893.
[7]刘发前. 圆形基坑土压力分布模式研究[D]. 上海: 上海交通大学, 2008.
LIU Faqian. Study on the distribution of the earth pressure of circular pit[D]. Shanghai: Shanghai Jiao Tong University, 2008.
[8]顾慰慈. 挡墙土压力计算手册[M]. 北京:中国建材工业出版社, 2004: 306-332.
GU Weici. Retaining wall earth pressure calculation manual[M]. Beijing: China Building Materials Press, 2004: 306-332.
[9]高江平, 俞茂宏. 双剪统一强度理论在空间主动土压力计算中的应用[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(1): 93-98.
GAO Jiangping, YU Maohong. Application of the twin-shear unified theory in the space earth pressure computation[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2006, 38(1): 93-98.
[10]李大鹏, 唐德高, 闫凤国, 等. 深基坑空间效应机理及考虑其影响的土应力研究[J]. 浙江大学学报(工学版), 2014, 48(9): 1632-1639.
LI Dapeng, TANG Degao, YAN Fengguo, et al. Mechanics of deep excavation’s spatial effect and soil pressure calculation method considering its influence[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9): 1632-1639.
[11]林庆涛, 朱建明, 康瑶. 考虑土拱效应的挡土墙空间土压力研究[J]. 岩石力学与工程学报, 2015, 34(9): 1918-1927.
LIN Qingtao, ZHU Jianming, KANG Yao. Active spatial earth pressure behind retaining wall considering arching effects of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1918-1927.
[12]朱正国, 安辰亮, 朱永全, 等. 地铁深竖井土压力理论研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3776-3783.
ZHU Zhengguo, AN Chenliang, ZHU Yongquan, et al. Research on soil pressure theory of deep subway shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3776-3783.
[13]TOBAR T, MEGUID A M. Comparative evaluation of methods to determine the earth pressure distribution on cylindrical shafts: A review[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 188-197.
[14]PEDRO A M G, ZDRAVKOV L, POTTS D, et al. Derivation of model parameters for numerical analysis of the Ivens shaft excavation[J]. Engineering Geology, 2017, 217: 49-60.
[15]蒋波. 挡土结构土拱效应及土压力理论研究[D]. 杭州: 浙江大学, 2005.
JIANG Bo. Study on soil arching effect and earth pressure for retaining structure[D]. Hangzhou: Zhejiang University, 2005.