为了定量分析风速时间序列的内在波动性,采用多重分形方法研究了湍流风场的脉动特性.基于湍流风谱模型获得了不同地表面粗糙度下的湍流风速时间序列数据,利用结构函数法计算了不同风速时间序列的分形维数,分析了地表面粗糙度对风速时间序列的分形维数的影响,采用多重分形-去趋势波动分析方法对湍流风速时间序列进行多重分形分析,以探讨湍流风场的内在波动性.结果表明,随着风速时间序列的地表面粗糙度的增大,分形维数和Δα(Δα为最大与最小组成元的比值)减小,|Δg|(Δg为最大与最小组成元出现的概率的比值)增大,即风速的脉动幅度减小.
In order to quantitatively analyze the inherent volatility of wind speed data, multifractal method is used to study the turbulence characteristics of turbulent wind field. The commonly used model of turbulent wind is introduced, based on the model wind speed data of different surface roughness are obtained. The fractal dimensions of different wind speed data are calculated with structure function dimension method, and the influence of surface roughness on the fractal dimension of wind speed data is considered. The wind speed data are analyzed with multifractal detrended fluctuation analysis method to explore the intrinsic structure of turbulent wind. And the results show that the greater the surface roughness is, the smaller the fractal dimension, the smaller the Δα (Δα is the ratio of the largest to the smallest constituent elements), and the bigger the |Δg| (Δg is the ratio of the probability of occurrence of the largest and smallest constituent elements).
[1]蔡继峰, 张宇. Kaimal和Von Karman湍流谱模型在风电机组载荷计算中的差异[J]. 风能, 2012(3): 82-86.
CAI Jifeng, ZHANG Yu. Differences of Kaimal and Von Karman turbulent wind spectral models in wind turbine load calculation[J]. Wind Energy, 2012(3): 82-86.
[2]田萌. 基于分形理论的风速时间序列分析及预测[D]. 天津: 天津工业大学电气工程与自动化学院, 2013.
TIAN Meng. Analysis and prediction of wind speed data based on fractal theory[D]. Tianjin: School of Electric Engineering and Automation, Tianjin Polytechnic University, 2013.
[3]何伟. 湍流风场模拟与风力发电机组载荷特性研究[D]. 北京: 华北电力大学能源动力与机械工程学院, 2013.
HE Wei. Research on turbulent wind field simulation and load characteristics of wind turbines[D]. Beijing: School of Energy and Mechanical Engineering, North China Electric Power University, 2013.
[4]王致杰, 刘三明, 孙霞. 大型风力发电机组状态监测与智能故障诊断[M].上海: 上海交通大学出版社, 2013.
WANG Zhijie, LIU Sanming, SUN Xia. Condition monitoring and intelligent fault diagnosis of large wind turbine[M]. Shanghai: Shanghai Jiao Tong University Press, 2013.
[5]邱玉珺, 邹学勇. 反映近地面状况的一个参数——风场分维数[J]. 北京师范大学学报(自然科学版), 2006, 42(1): 98-101.
QIU Yujun, ZOU Xueyong. A parameter reflecting the condition of near-surface—Fractal dimension of wind field[J]. Journal of Beijing Normal University (Natural Science), 2006, 42(1): 98-101.
[6]秦付倩. 风场分形特性及缺失数据插补研究[D]. 长沙: 湖南大学机械工程学院, 2012.
QIN Fuqian. Study of fractal characteristics of wind field and missing data interpolation[D]. Changsha: School of Mechanical Engineering, Hunan University, 2012.
[7]孙斌, 姚海涛. 风电场风速时间序列的多重分形去趋势波动分析[J]. 电工技术学报, 2014, 29(6): 204-210.
SUN Bin, YAO Haitao. Multi-fractal detrended fluctuation analysis of wind speed time series in wind farm[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 204-210.
[8]李倩倩, 李春, 杨阳, 等. 风场风谱模型的分形维数研究[J]. 能源工程, 2016(2): 28-31.
LI Qianqian, LI Chun, YANG Yang, et al. Fractal dimensions research on wind field spectrums[J]. Energy Engineering, 2016(2): 28-31.
[9]吴红华, 邱敏, 秦付倩, 等. 风洞中风场的分形特征分析[J]. 自然灾害学报, 2014, 23(1): 32-38.
WU Honghua, QIU Min, QIN Fuqian, et al. Fractal characteristic analysis of wind field in wind tunnel[J]. Journal of Natural Disasters, 2014, 23(1): 32-38.
[10]王兴元, 孟娟. 分形几何学及应用[M]. 北京: 科学出版社, 2015.
WANG Xingyuan, MENG Juan. Fractal geometry and its application[M]. Beijing: Science Press, 2015.
[11]朱华, 葛世荣. 结构函数与均方根分形表征效果的比较[J]. 中国矿业大学学报, 2004, 33(4): 396-399.
ZHU Hua, GE Shirong. Comparison of fractal characterization effects of structure function and mean square root[J]. Journal of China University of Mining & Technology, 2004, 33(4): 396-399.
[12]KANTELHARDT J W. Fractal and multifractal time series[M]. Berlin: Springer, 2011.
[13]KANTELHARDT J W, KOSCIELNY-BUNDE E, REGO H H A, et al. Detecting long-range correlations with detrended fluctuation analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 295(3/4): 441-454.
[14]KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY-BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 316(1/2/3/4): 87-114.