学报(中文)

胃肠道疾病无创诊查技术进展

展开
  • 上海交通大学 仪器科学与工程系,上海 200240
颜国正(1961-),男,湖南省益阳市人,教授,博士生导师,现主要从事胃肠道疾病无创诊查技术等研究. 电话(Tel.):021-34204434;E-mail:gzhyan@sjtu.edu.cn.

基金资助

国家自然科学基金(61673271),上海市科委科研计划(15441903100)资助项目

A Review of Noninvasive Detection Technologies for Gastrointestinal Tract Disease

Expand
  • Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

摘要

发展新技术、新仪器,对胃肠道恶性肿瘤及功能性疾病进行早期、无创和在体研究及评价,是当前国际社会关注的重点.概述3类胃肠道疾病检测仪器:① 目前已有临床上用于胃肠道内恶性肿瘤诊查的常规方法及手段;② 胃肠道功能性疾病的诊断有赖于腔内生理参数的检测,相关检测仪器的研制为无创、精准诊断提供了新手段;③ 基于微型机器人技术的无创、在体检测胃肠道内多元医学信息新型仪器的研制,成为国际机器人和生物医学工程领域的研究前沿和重点.最后,对相关研究趋势进行预测.

本文引用格式

颜国正,邝帅,汪炜 . 胃肠道疾病无创诊查技术进展[J]. 上海交通大学学报, 2018 , 52(10) : 1404 -1409 . DOI: 10.16183/j.cnki.jsjtu.2018.10.032

Abstract

Novel approaches and instruments to realize noninvasive and in vivo detection to the diseases at early stage are highly demanded. The paper briefly outlines the current detection devices and the developing direction. Some latest methods for detecting malignant tumor on gastrointestinal tract has been used regularly in clinical applications. The detection of relative physiological parameters provides new solution since the diagnosis of functional disorder depends on the parameters. The multiple medical information detection instrument based on microrobots is noninvasive and can be used in vivo. It attracts much attention of researchers on robotics and medical engineering. Finally, the latest trend of this field is predicted.

参考文献

[1]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 2017, 67(1): 7-30. [2]国家卫生和计划生育委员会. 2016年中国卫生和计划生育统计年鉴[M].北京:中国协和医科大学出版社, 2016. National Health and Family Planning Commission of the People’s Republic of China. China health and family planning yearbook [M]. Beijing: Peking Union Medical College Press, 2016. [3]STEIN D J, SHAKER R. Complications of upper gastrointestinal endoscopy [M] //THAM T C K, COLLINS J S A, SOETIKNO R. Gastrointestinal emergencies. 3rd ed. Chichester: Wiley Blackwell, 2016: 45-50. [4]SOETIKNO R, SANCHEZ YAGUE A. Complications of capsule endoscopy [M]//THAM T C K, COLLINS J S A, SOETIKNO R. Gastrointestinal emergencies. 3rd ed. Chichester: Wiley Blackwell, 2016: 86-90. [5]LIU G, YAN G Z, ZHU B Q, et al. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract [J]. Medical and Biological Engineering and Computing, 2016, 54(11): 1779-1791. [6]NATALI C, BECCANI M, SIMAAN N, et al. Jacobian-based iterative method for magnetic localization in robotic capsule endoscopy[J]. IEEE Transactions on Robotics, 2016, 32(2): 327-338. [7]胶囊机器人[EB/OL]. [2018-04-23]. http://www.jinshangroup.com/产品中心/胶囊机器人/tabid/67/Default.aspx. 2016. [8]LIEN G S, LIU C W, JIANG J A, et al. Magnetic control system targeted for capsule endoscopic operations in the stomach—Design, fabrication, and in vitro and ex vivo evaluations [J]. IEEE Transactions on Biomedical Engineering, 2012, 59(7): 2068. [9]REY J F. The future of magnetic guided capsule endoscopy: Designed for gastroscopy, does it have a role in small bowel enteroscopy? [M]//KOZAREK R, LEIGHTON J, JONATHAN A. Endoscopy in small bowel disorders. Cham, Switzerland: Springer, 2015: 225-235. [10]POPEK K M, SCHMID T, ABBOTT J J. Six-degree-of-freedom localization of an untethered magnetic capsule using a single rotating magnetic dipole [J]. IEEE Robotics and Automation Letters, 2017, 2(1): 305-312. [11]FARMER A, WEGEBERG B, BROCK A, et al. Regional gastrointestinal contractility parameters using the wireless motility capsule: Inter-observer reproducibility and influence of age, gender and study country [J]. Alimentary Pharmacology & Therapeutics, 2018, 47(3): 391-400. [12]HASLER W, MAY L, WILSON M, et al. Relating gastric scintigraphy and symptoms to motility capsule transit and pressure findings in suspected gastroparesis [J]. Neurogastroenterology & Motility, 2018. 30(2): e13196. [13]TARTERA H, WEBB A K, SAFFAR M, et al. Validation of SmartPill? Wireless motility capsule for gastrointestinal transit time: Intra-subject variability, software accuracy and comparison with video capsule endoscopy [J]. Neurogastroenterology & Motility, 2017, 29(10). DOI: 10.1111/nmo.13107. [14]XU F, YAN G Z, ZHAO K, et al. Quantifying the complexity of human colonic pressure signals using an entropy measure [J]. Biomedical Engineering/Biomedizinische Technik, 2016, 61(1): 127-132. [15]ZHAO K, YAN G Z, WANG Z W, et al. Complexity measure analysis of colorectal pressure signal in patients with functional constipation [J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(7): 4185-4190. [16]LU L, YAN G Z, KONG X Y. Colonic motility analysis using the wireless capsule [J]. IEEE Sensors Journal, 2016, 16(9): 3272-3281. [17]LU L, YAN G Z, ZHAO K. Analysis of the chaotic characteristics of human colonic activities and comparison of healthy participants to costive subjects [J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(1): 231-239. [18]GRONLUND D, POULSEN J, SANDBERG T, et al. Established and emerging methods for assessment of small and large intestinal motility [J]. Neurogastroenterology & Motility, 2017, 29(7): 13008. [19]CIUTI G, CALIO R, CAMBONI D, et al. Frontiers of robotic endoscopic capsules: A review [J]. Journal of Micro-Bio Robotics, 2016, 11(1): 1-18. [20]STEPHEN P, TIMOTHY G. Wireless capsule endoscope for targeted drug delivery: Mechanics and design considerations [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4): 945-953. [21]FU Q, GUO S, ZHANG S, et al. Characteristic evaluation of a shrouded propeller mechanism for a magnetic actuated microrobot [J]. Micromachines, 2015, 6(9): 1272-1288. [22]ZHANG Y S, CHI M L, SU Z K. Critical coupling magnetic moment of a petal-shaped capsule robot[J]. IEEE Transactions on Magnetics, 2016, 52(1): 1-9. [23]LUCARINI G, CIUTI G, MURA M, et al. A new concept for magnetic capsule colonoscopy based on an electromagnetic system[J]. International Journal of Advanced Robotic Systems, 2015. DOI: 10.5772/60134. [24]BECCANI M, TUNC H, TADDESE A, et al. Systematic design of medical capsule robots[J]. IEEE Design & Test, 2015, 32(5): 98-108. [25]LE V H, HERNANDO L R, CHOI H, et al. Shape memory alloy-based biopsy device for active locomotive intestinal capsule endoscope[J]. Journal of Engineering in Medicine, 2015, 229(3): 255-263. [26]YIM S, SUNG C, MIYASHITA S, et al. Animatronic soft robots by additive folding [J]. The International Journal of Robotics Research, 2018, 37(6): 611-628. [27]DE FALCO I, TORTORA G, DARIO P, et al. An integrated system for wireless capsule endoscopy in a liquid-distended stomach [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(3): 794-804. [28]ZHONG Y, DU R X, CHIU P W Y, et al. Tadpole endoscope: A wireless microrobot fish forexamining the entire gastrointestinal (GI) tract [J]. HKIE Transactions, 2015, 22(2): 117-122. [29]LE V H, RODRIGUEZ H L, LEE C, et al. A soft-magnet-based drug-delivery module for active locomotive intestinal capsule endoscopy using an electromagnetic actuation system [J]. Sensors and Actuators A: Physical, 2016, 243: 81-89. [30]YOO S S, RAMA S, SZEWCZYK B, et al. Endoscopic capsule robots using reconfigurable modular assembly: A pilot study [J]. International Journal of Imaging Systems and Technology, 2014, 24(4): 359-365. [31]GAO J Y, YAN G Z. A novel power management circuit using a super-capacitor array for wireless powered capsule robot [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1444-1455. [32]GAO J Y, YAN G Z, WANG Z W, et al. Locomotion enhancement of an inchworm-like capsule robot using long contact devices [J]. International Journal of Medical Robotics & Computer Assisted Surgery, 2017, 13(2): 1759. [33]GAO J Y, YAN G Z, HE S, et al. Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper [J]. Robotica, 2017, 35(3): 521-536. [34]KE Q, JIANG P P, YAN G Z. Standardized design of the transmitting coils in inductive coupled endoscope robot driving systems [J]. Journal of Power Electronics, 2017, 17(3): 835-847. [35]MAHONEY A W, ABBOTT J J. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy [J]. The International Journal of Robotics Research, 2016, 35(1/2/3): 129-147. [36]GAN L, ZHANG H. Variable step least mean square adaptive filtering method for wireless capsule endoscopy positioning system [J]. Optik, 2018, 171: 543-551. [37]BEG S, CARD T, WILKES E, et al. The accuracy and tolerability of magnet assisted capsule endoscopy for the investigation of oesophageal pathology [J]. Gut, 2018, 67(S1): A139. [38]TADDESE A Z, SLAWINSKI P R, PIROTTA M, et al. Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes [J]. International Journal of Robotics Research, 2018. DOI: 10.1177/0278364918779132.
Options
文章导航

/