学报(中文)

用于电刺激人造视网膜系统的专用集成电路设计

展开
  • 上海交通大学 微纳电子学系, 上海 200240
陈曦(1990-),男,北京市人,博士研究生,主要研究方向为人造视网膜.

基金资助

广东省引进创新团队计划资助项目(2013S046),深圳海外高层次人才资金资助项目

Integrated Circuit Design for Retinal Prosthesis System

Expand
  • Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China

摘要

老年性黄斑变性(Age-related Macular Degeneration, AMD)及视网膜色素变性(Retinitis Pigmentosa, RP)是视网膜退化及致盲的常见原因.研究发现,这些患者视网膜中的大部分神经细胞及视神经通路依旧完好,借助人造视网膜的电刺激有可能恢复患者的视觉.专用集成电路是人造视网膜系统中最关键的组成部分.介绍了人造视网膜系统中专用集成电路的发展,并提出了用于新一代高密度电刺激人造视网膜系统的专用集成电路体系架构,同时设计并测试了采用此体系架构的一款128通道的专用芯片.

本文引用格式

陈曦,周杰,郭训华,郑志恒,李慧,陈诚,王国兴 . 用于电刺激人造视网膜系统的专用集成电路设计[J]. 上海交通大学学报, 2018 , 52(10) : 1234 -1241 . DOI: 10.16183/j.cnki.jsjtu.2018.10.011

Abstract

Retina degenerations including age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are common diseases causing blindness. Studies show that although the photo receptors in patients’ retina are damaged, most of the vision neurons remain attached, making current stimulation possible to restore vision. Application specific integrated circuit (ASIC) plays an important role in the development of retinal prosthesis. In this paper, the development of ASIC in retinal prosthesis is firstly reviewed. Architecture and chip designs of an ASIC for 128-channel retinal prosthesis are then introduced and the test results are presented.

参考文献

[1]HUMAYUN M S, JR D J E, WEILAND J D, et al. Pattern electrical stimulation of the human retina[J]. Vision Research, 1999, 39(15): 2569-2576. [2]ZHOU D D, DORN J D, GREENBERG R J. The Argus II retinal prosthesis system: An overview[C]//2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2013: 1-6. [3]WEILAND J D, HUMAYUN M S. Retinal prosthesis[J]. Biomedical Engineering, IEEE Transactions on, 2014, 61(5): 1412-1424. [4]HUMAYUN M S, WEILAND J D, FUJII G Y, et al. Visual perception in a blind subject with chronic microelectronic retinal prosthesis[J]. Vision Research, 2003, 43(24): 2573-2581. [5]HUMAYUN M S, DORN J D, CRUZ L D, et al. Interim results from the international trial of Second Sight’s visual prosthesis[J]. Ophthalmology, 2012, 119(4): 779-788. [6]MONGE M, RAJ M, NAZARI M H, et al. A fully intraocular high-density self-calibrating epiretinal prosthesis[J]. Biomedical Circuits and Systems, IEEE Transactions on, 2013, 7(6): 747-760. [7]CHEN K, LO Y K, LIU W. A 37.6 mm2 1024-channel high-compliance-voltage SoC for epiretinal prostheses[C]//Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International. IEEE, 2013: 294-295. [8]CAPPS C. Near field or far field?[J]. EDN, 2001, 8: 95-102. [9]WANG G, LIU W, SIVAPRAKASAM M, et al. A dual band wireless power and data telemetry for retinal prosthesis[C]//Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE. IEEE, 2006: 4392-4395. [10]SHAH S, HINES A, ZHOU D, et al. Electrical properties of retinal-electrode interface[J]. Journal of Neural Engineering, 2007, 4: S24-S29. [11]SOKAL N O, SOKAL A D. Class E—A new class of high efficiency tuned single-ended switching power amplifiers[J]. IEEE Journal of Solid-State Circuits, 1975, 10(3): 168-176. [12]ZHOU J, CHEN X, WU T, et al. A fully differential high efficient ASK demodulator for biomedical implantable application[C]//ASIC (ASICON), 2017 IEEE 12th International Conference on. IEEE, 2017: 508-511. [13]ORTMANNS M, ROCKE A, GEHRKE M, et al. A 232-channel epiretinal stimulator ASIC[J]. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2946-2959. [14]CHEN K, YANG Z, HOANG L, et al. An integrated 256-channel epiretinal prosthesis[J]. IEEE Journal of Solid-State Circuits, 2010, 45(9): 1946-1956. [15]TRAN N, BAI S, YANG J, et al. A complete 256-electrode retinal prosthesis chip[J]. IEEE Journal of Solid-State Circuits, 2014, 49(3): 751-765.
Options
文章导航

/