学报(中文)

集成电路碳纳米管互连建模与特性研究

展开
  • 上海交通大学 高速电子系统设计与电磁兼容研究教育部重点实验室, 上海 200240
唐旻(1980-),男,上海市人,副教授,主要研究方向为高速集成电路与系统级封装设计. E-MAIL: tm222@sjtu.edu.cn

网络出版日期: 2018-10-18

基金资助

国家自然科学基金资助项目(61674105,61522113,61771311)

Modeling and Characterization of Interconnects with Carbon Nanotubes for Integrated Circuits

Expand
  • Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High Speed Electronic Systems, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-10-18

摘要

近年来,基于碳基材料的纳米尺度互连方案得到了人们的广泛关注,为下一代集成电路的互连技术提供了一种全新的解决途径.基于国内外在碳纳米互连建模和特性研究方面的进展,并结合本课题组取得的相关成果,对集成电路碳纳米管互连的等效电路建模、时延特性以及热特性进行了系统的分析,并与传统铜互连进行了全面比较.最后对具有实用前景的碳纳米异质互连技术进行了简要介绍和展望.

本文引用格式

唐旻,吴林晟,李晓春,毛军发 . 集成电路碳纳米管互连建模与特性研究[J]. 上海交通大学学报, 2018 , 52(10) : 1135 -1141 . DOI: 10.16183/j.cnki.jsjtu.2018.10.001

Abstract

In recent years, the nano-scale interconnection scheme based on carbon-based materials has attracted widespread attention and provided a new solution for the interconnect technology of next-generation integrated circuits. Based on the progress made by domestic and foreign researchers in the modeling and characterization of carbon-based interconnections, combined with the related results achieved by our group, the equivalent circuit modeling, as well as the time-delay and thermal characteristics of carbon nanotube (CNT) interconnects in integrated circuit are studied. A systematic comparison is made between the CNT interconnects and traditional copper ones. Finally, a brief introduction of carbon-based heterogeneous interconnect technology and some prospects are given.

参考文献

[1]MEINDL J, CHEN Q, DAVIS J. Limits on silicon nanoelectronics for terascale integration [J]. Science, 2001, 293: 2044-2049. [2]ITRS. International technology roadmap for semiconductors (2013 ed) [EB/OL]. [2018-04-28]. http:∥www.itrs2.net. [3]毛军发, 唐旻. 高速集成电路互连[M]. 北京: 科学出版社, 2017. MAO Junfa, TANG Min. High-speed integrated circuits interconnects [M]. Beijing: Science Press, 2017. [4]RYU C, KWON K W, LOKE A L S, et al. Microstructure and reliability of copper interconnects [J]. IEEE Transactions on Electron Devices, 1999, 46(6): 1113-1120. [5]IM S, SRIVASTAVA N, BANERJEE K, et al. Scaling analysis of multilevel interconnect temperatures for high-performance ICs [J]. IEEE Transactions on Electron Devices, 2005, 52(12): 2710-2719. [6]LI H, XU C, BANERJEE K. Carbon nanomaterials: The ideal interconnect technology for next-generation ICs [J]. IEEE Design & Test of Computers, 2010, 27(4): 20-31. [7]XU C, LI H, BANERJEE K. Modeling, analysis, and design of graphene nano-ribbon interconnects [J]. IEEE Transactions on Electron Devices, 2009, 56(8): 1567-1578. [8]NAEEMI A, MEINDL J D. Design and performance modeling for single-walled carbon nanotubes as local, semiglobal, and global interconnects in gigascale integrated systems [J]. IEEE Transactions on Electron Devices, 2007, 54(1): 26-37. [9]PU S N, YIN W Y, MAO J F, et al. Crosstalk prediction of single-and double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects [J]. IEEE Transactions on Electron Devices, 2009, 56(4): 560-568. [10]JANG J E, CHA S N, CHOI Y, et al. Nanoscale capacitors based on metal-insulator-carbon nanotube-metal structures [J]. Applied Physics Letters, 2005, 87(26): 263103. [11]LI H, XU C, SRIVASTAVA N, et al. Carbon nanomaterials for next-generation interconnects and passives: Physics, status and prospects [J]. IEEE Transactions on Electron Devices, 2009, 56(9): 1799-1821. [12]TANS S J, VERSCHUEREN A R M, DEKKER C. Room-temperature transistor based on a single carbon nanotube [J]. Nature, 1998, 393: 49-52. [13]LIN A, PATIL N, RYU K, et al. Threshold voltage and on-off ratio tuning for multiple-tube carbon nanotube FETs [J]. IEEE Transactions on Nanotechnology, 2009, 8(1): 4-9. [14]YU Q, LIAN J, SIRIPONGLERT S, et al. Graphene segregated on Ni surfaces and transferred to insulators [J]. Applied Physics Letters, 2008, 93: 113103. [15]KANG J, SARKAR D, KHATAMI Y, et al. Proposal for all-graphene monolithic logic circuits [J]. Applied Physics Letters, 2013, 103: 083113. [16]DIJON J, OKUNO H, FAYOLLE M, et al. Ultra-high density carbon nanotubes on Al-Cu for advanced vias [C]∥International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2010: 1-4. [17]BURKE P J. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes [J]. IEEE Transactions on Nanotechnology, 2002, 99(3): 129-144. [18]SRIVASTAVA N, LI H, KREUPL F, et al. On the applicability of single-walled carbon nanotubes as VLSI interconnects [J]. IEEE Transactions on Nanotechnology, 2009, 8(4): 542-559. [19]LI H, BANERJEE K. High-frequency effects in carbon nanotube interconnects and implications for on-chip inductor design [C]∥International Electron Devices Meeting. San Francisco, CA, USA: IEEE, 2008: 1-4. [20]NAEEMI A, MEINDL J D. Compact physical models for multiwall carbon-nanotube interconnects [J]. IEEE Electron Device Letters, 2006, 27(5): 338-340. [21]LI H, YIN W Y, BANERJEE K, et al. Circuit mo-deling and performance analysis of multi-walled carbon nanotube interconnects [J]. IEEE Transactions on Electron Devices, 2008, 55(6): 1328-1337. [22]SARTO M S, TAMBURRANO A. Single-conductor transmission-line model of multiwall carbon nanotubes [J]. IEEE Transactions on Nanotechnology, 2010, 9(1): 82-92. [23]TANG M, MAO J F. Modeling and fast simulation of multiwalled carbon nanotube interconnects [J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(2): 232-240. [24]李宏. 碳纳米管在纳米集成电路互连线中的应用研究[D]. 上海: 上海交通大学, 2008. LI Hong. On the applicability of carbon nanotubes as interconnect in nanoscale integrated circuits [D]. Shanghai: Shanghai Jiao Tong University, 2008. [25]KAWABATA A, SATO S, NOZUE T, et al. Robustness of CNT via interconnect fabricated by low temperature process over a high-density current [C]∥International Interconnect Technology Conference. Burlingame, CA, USA: IEEE, 2008: 237-239. [26]LI H, SRIVASTAVA N, MAO J F, et al. Carbon nanotube vias: A reality check [C]∥International Electron Devices Meeting. Washington, DC, USA: IEEE, 2007: 207-210. [27]LI H, SRIVASTAVA N, MAO J F, et al. Carbon nanotube vias: Does ballistic electron-phonon transport imply improved performance and reliability?[J]. IEEE Transactions on Electron Devices, 2011, 58(8): 2689-2701. [28]LIU Y F, ZHAO W S, ZHENG Y, et al. Electrical modeling of three-dimensional carbon-based heterogeneous interconnects [J]. IEEE Transactions on Nanotechnology, 2014, 13(3): 488-495. [29]LI N, MAO J F, ZHAO W S, et al. Electrothermal cosimulation of 3-D carbon-based heterogeneous interconnects [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(4): 518-526.
Options
文章导航

/