学报(中文)

基于直线特征的机器人自主定位方法

展开
  • 上海理工大学 光电信息与计算机工程学院, 上海 200093

基金资助

国家自然科学基金(61374039),上海市自然科学基金(15ZR1429100),沪江基金(C14002)资助项目

Autonomous Localisation Method Based on Linear Feature for Robots

Expand
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

摘要

针对迭代最近点(ICP)算法容易造成局部最优和正态分布变换(NDT)算法在长距离导航中会出现较大转角偏差的问题,提出一种基于直线特征的ICP自主定位(CICP)方法.利用激光扫描点集与其拟合直线的协方差函数关系,以快速匹配扫描点间的直线特征,通过扫描匹配点集与拟合直线的闭环误差获得当前时刻全局环境中相邻匹配扫描点间的位姿,并通过室内环境下的自主定位实验验证其可靠性.结果表明,与传统的ICP算法和NDT算法相比,CICP算法具有较好实时性和较高的定位精度,能够降低ICP算法的矩阵运算量,提高机器人的自定位精度.

本文引用格式

杨晶东,彭坤,顾浩楠,师艳伟 . 基于直线特征的机器人自主定位方法[J]. 上海交通大学学报, 2018 , 52(9) : 1120 -1124 . DOI: 10.16183/j.cnki.jsjtu.2018.09.017

Abstract

The convergence for iterative closest point (ICP) algorithm depends much on the inputs, which often results in local optimum. And normal distribution transform (NDT) algorithm usually acquires more scans in scan matching, and the large angular deviation occurs during long-term autonomous navigation for robots. An improved ICP self-localization algorithm based on line feature is proposed in the paper. We derive functional relations of covariance matrix between matching scans and their fitting lines to scan and match line features rapidly. And the robot updates global poses in terms of closed form correlations. We test the reliability of CICP algorithm in indoor locating experiments. The experiments show that CICP algorithm, compared with ICP or NDT, owns higher real-time and location accuracy, and can reduce matrix computation and improve self-localization precision efficiently.

参考文献

[1]CHO B S, MOON W S, SEO W J, et al. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding[J]. Journal of Mechanical Science and Technology, 2011, 25 (11): 2907-2917. [2]KNUTH J, BAROOAH P. Error growth in position estimation from noisy relative pose measurements[J]. Robotics and Autonomous Systems, 2013, 61(3): 229-244. [3]PELIVANOV I, BUMAC T, XIA J J, et al. NDT of fiber-reinforced composites with a new fiber-optic pump-probe laser-ultrasound system[J]. Photoacoustics, 2014, 2(2): 63-74. [4]EINHORN E, GROSS H M. Generic NDT mapping in dynamic environments and its application for lifelong SLAM[J]. Robotics and Autonomous Systems, 2015, 69: 28-39. [5]BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. [6]KONECNY J, PRAUZEK M, HLAVICA J. ICP algorithm in mobile robot navigation: Analysis of computational demands in embedded solutions[J]. IFAC-Papers Online, 2016, 49(25): 396-400. [7]PARK S, PARK S K. Global localization for mobile robots using reference scan matching[J]. International Journal of Control, Automation and Systems, 2014, 12(1): 156-168. [8]TANG J, CHEN Y W, JAAKKOLA A. NAVIS—An UGV indoor positioning system using laser scan matching for large-area real-time applications[J]. Sensors, 2014, 14(7): 11805-11824. [9]ARRAS K O, SIEGWART R Y. Feature extraction and scene interpretation for map-based navigation and map building[C]∥Proceedings of SPIE, Mobile Robotics XII. Pittsburgh, USA: SPIE, 1997. [10]POMERLAEAU F, COLAS F, SIEGWART R, et al. Comparing ICP variants on real-world data sets[J]. Autonomous Robots, 2013, 34(3): 133-148. [11]LU F. Shape registration using optimization for mobile robot navigation[D]. Toronto, Canada: Doctoral thesis at the University of Toronto, 1995. [12]TIAR R, LAKROUF M, AZOUAOUI O. Fast ICP-SLAM for a bi-steerable mobile robot in large environments[C]∥2015 International Conference on Advanced Robotics (ICAR). Istanbul, Turkey: IEEE, 2015: 611-616.
Options
文章导航

/