学报(中文)

不平衡电网下风电并网变流器的滑模电流控制

展开
  • 上海交通大学 风力发电研究中心, 上海 200240
韩刚(1985-),男,江苏省徐州市人,博士生,主要研究方向为风电接入及变流器的优化控制技术.

基金资助

国家自然科学基金项目(51677117),台达环境与教育基金会项目(DREM2016005)

Sliding-Mode Control of Current for Wind Power Grid-Connected Converter Under Unbalanced Grid Voltage

Expand
  • Wind Power Research Center, Shanghai Jiao Tong University, Shanghai 200240, China

摘要

为了增强对不平衡电网的适应能力,提出一种适用于LCL型并网变流器的滑模电流控制策略.建立了电流内环及电压外环的滑模控制方程,采用指数趋近率的设计方法改善滑模动态品质与系统抖振,根据扩展瞬时功率理论计算参考电流指令,在实现三相并网电流呈正弦波形变化的同时,消除了并网有功功率和扩展无功功率的2倍频波动.同时,搭建了基于RT-LAB软件的硬件在环实验控制平台,通过对比实验验证了所提滑模控制算法的正确性,及其在动态响应速度和抗参数扰动方面的优越性.

本文引用格式

韩刚,蔡旭 . 不平衡电网下风电并网变流器的滑模电流控制[J]. 上海交通大学学报, 2018 , 52(9) : 1065 -1071 . DOI: 10.16183/j.cnki.jsjtu.2018.09.009

Abstract

In order to strengthen the ability in adopting unbalanced grid voltage, a sliding-mode control strategy of current for grid-connected converter with an LCL filter was proposed, and the sliding-mode governing equations of inner current loop and outer voltage loop were established, respectively. Dynamic quality and chattering effect of the designed sliding-mode controller were improved by using exponential rate control method. The referenced current was generated based on extended instantaneous power theory, and the objective of three-phase sinusoidal current was achieved while the second frequency fluctuation in both active and extended reactive power were eliminated. Finally, hardware-in-loop experimental platform based on RT-LAB was built. Results of comparative experiment demonstrated the correctness of proposed algorithm, as well as the excellent properties in dynamic response speed and parameter robustness.

参考文献

[1]TOBIAS N, THOMAS W, GEERT D, et al. Enhanced dynamic voltage control of type 4 wind turbines during unbalanced grid faults[J]. IEEE Transactions on Energy Conversion, 2015, 30(4): 1650-1659. [2]CHONG H, LI R, JIM B. Unbalanced-grid-fault ride-through control for a wind turbine inverter[J]. IEEE Transactions on Industry Applications, 2008, 44(3): 845-856. [3]MA K, CHEN W, MARCO L, et al. Power controllability of a three-phase converter with an unbalanced AC source[J]. IEEE Transactions on Power Electronics, 2015, 30(3): 1591-1604. [4]MITRA M, JOSEP P, BABURAJ K, et al. Resonant versus conventional controllers in grid-connected photovoltaic power plants under unbalanced grid vol-tages[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1124-1132. [5]JON A, ALVARO L, PEDRO R, et al. Virtual-flux-based voltage-sensor-less power control for unbalanced grid conditions[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 4071-4087. [6]FARZAM N, LI Y, WU B. Control strategies of three-phase distributed generation inverters for grid unbalanced voltage compensation[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5228-5241. [7]ALEJANDRO C, SALVADOR A, JOSEP B, et al. Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1503-1514. [8]SEYED M, MAAROUF S, HANI V, et al. Sliding mode control of PMSG wind Turbine based on enhanced exponential reaching law[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6148-6159. [9]ADEL M, KHANDKER T, HUSSEIN I, et al. Implementation of sliding mode control system for generator and grid sides control of wind energy conversion system[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 1327-1335. [10]ANA S, MIREN I, GERARDO T, et al. Second-order sliding-mode controller design and tuning for grid synchronisation and power control of a wind turbine-driven doubly fed induction generator[J]. IET Renewable Power Generation, 2013, 7(5): 540-551. [11]MARTINEZ M, GERARDO T, ANA S, et al. Sliding-mode control for DFIG rotor- and grid-side converters under unbalanced and harmonically distorted grid voltage[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 328-339. [12]SHANG L, SUN D, HU J. Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions[J]. IET Power Electronics, 2011, 4(5): 570-579. [13]HU J, SHANG L, HE Y, et al. Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach[J]. IEEE Transactions on Power Electronics, 2011, 26(1): 210-222. [14]SEBAALY F, VAHEDI H, KANAAN H Y, et al. Sliding mode fixed frequency current controller design for grid-connected NPC inverter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(4): 1397-1405. [15]TEODORESCU R, LISERRE M, RODRIGUEZ P. Grid converters for photovoltaic and wind power systems[M]. Hoboken, USA: John Wiley & Sons, 2011. [16]YONGSUG S, THOMAS A. Modeling and analysis of instantaneous active and reactive power for PWM AC/DC converter under generalized unbalanced network[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1530-1540.
Options
文章导航

/