学报(中文)

超临界射流模型的构建及验证

展开
  • 大连理工大学 能源与动力工程学院, 辽宁 大连 116024
李亮(1986-),男,山东省泰安市人,博士生,目前主要从事跨/超临界射流喷雾研究.

基金资助

国家自然科学基金资助项目(51376029)

摘要

利用计算流体动力学(CFD)软件的OpenFOAM开源程序,基于Soave-Redlich-Kwong (SRK)真实流体状态方程和压力隐式分割算法(PISO),考虑气体可压缩性对压力方程的影响,对等温压缩系数进行修正,建立适用于超临界射流的CFD模型,并采用激波管模拟实验和氮气的超临界射流实验对模型进行验证.结果表明:修正后的模型具有较高的预测精度,能够模拟实验结果.

本文引用格式

李亮,解茂昭,贾明,刘宏升 . 超临界射流模型的构建及验证[J]. 上海交通大学学报, 2018 , 52(9) : 1058 -1064 . DOI: 10.16183/j.cnki.jsjtu.2018.09.008

Abstract

Supercritical injection and combustion processes are prevalent in liquid rockets and hypersonic flight equipment. Under the critical state, the thermophysical and transport properties of the fluid are very sensitive to pressure and temperature, and the ideal state equation is no longer applicable. Based on the OpenFOAM open source program and by using the classical pressure implicit split operator (PISO) algorithm to couple the velocity and pressure, this paper presents a new computational fluid dynamics (CFD) solver for supercritical jet, which incorporates the Soave-Redlich-Kwong (SRK) real-fluid equation of state and takes into account the effect of the isothermal compression coefficient on the pressure equation. And the numerical validity of the model is verified against experiments of a shock tube and supercritical jet. The results show that the new model possesses good prediction accuracy and reproduces the experimental results well. The model can be further extended for applications to transcritical and supercritical spray and mixing under internal combustion engine conditions.

参考文献

[1]YANG V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems[J]. Proceedings of the Combustion Institute, 2008, 28(1): 925-942. [2]GIVLER S D, ABRAHAM J. Supercritical droplet vaporization and combustion studies[J]. Progress in Energy and Combustion Science, 1996, 22(1): 1-28. [3]OSCHWALD M, SMITH J J, BRANAM R, et al. Injection of fluids into supercritical environments[J]. Combust Science and Technology, 2006, 178(1/2/3): 49-100. [4]KIMA T, KIMA Y, KIMB S K. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures[J]. Journal of Supercritical Fluids, 2011, 56 (2): 152-163. [5]BRANAM R, MAYER W. Characterization of cryogenic injection at supercritical pressure[J]. Journal of Propulsion Power, 2003, 19(3): 342-355. [6]SEGAL C, POLIKHOV S A. Subcritical to supercritical mixing[J]. Physics of Fluids, 2008, 20(5): 052101-1-7. [7]FALGOUT Z, RAHM M, WANG Z. Evidence for supercritical mixing layers in the ECN Spray A[J]. Proceedings of the Combustion Institute, 2014, 35(2): 1579-1586. [8]WENSING M, VOGEL T, GOTZ G. Transition of diesel spray to a supercritical state under engine conditions[J]. International Journal of Engine Research, 2015, 21(5): 227-235. [9]OEFELEIN J C, YANG V. Modeling high-pressured mixing and combustion processes in liquid rocket engines[J]. Journal of Propulsion and Power, 2012, 14(5): 843-857. [10]ZONG N, MENG H, HSIEH S Y, et al. A numerical study of cryogenic fluid injection and mixing under supercritical conditions[J]. Physics of Fluids, 2004, 16(12): 4248-4261. [11]DUKHIN S S, ZHUA C, DAVE R, et al. Dynamic interfacial tension near critical point of a solvent-antisolvent mixture and laminar jet stabilization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229(1/2/3): 181-199. [12]DAHMS R N, OEFELEIN J C. Non-equilibrium gas-liquid interface dynamics in high-pressure liquid injection systems[J]. Proceedings of the Combustion Institute, 2015, 35(4): 1587-1594. [13]PARK T S. LES and RANS simulations of cryogenic liquid nitrogen jets[J]. Journal of Supercritical Fluids, 2012, 72(12): 232-247. [14]李云清, 何鹏. 超临界环境下燃料液滴蒸发过程的计算研究[J]. 内燃机学报, 2008, 26(1): 55-61. LI Yunqing, HE Peng. Numerical investigation of fuel droplet evaporation in a supercritical environment[J]. Transactions of CSICE, 2008, 26(1): 55-61. [15]华益新, 王亚洲, 孟华. 超临界压力下正庚烷的湍流传热数值研究[J].航空学报, 2010, 31: 1324-1330. HUA Yixin, WANG Yazhou, MENG Hua. Numerical study on turbulent convective heat transfer with n-heptane under supercritical pressures[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31: 1324-1330. [16]范珍涔, 范玮. 流动参数对超临界喷射特性影响的数值模拟[J]. 航空学报, 2013, 34(5): 1018-1027. FAN Zhencen, FAN Wei. Numerical simulation on effects of flow parameters on supercritical injection characteristics[J]. Acta Aeronautica Et Astronautica Sinica, 2013, 34(5): 1018-1027. [17]解茂昭. 内燃机跨临界/超临界燃料喷雾混合过程的机理与模型[J].燃烧科学与技术, 2014, 20(1): 1-9. XIE Maozhao. Mechanism and modeling of transcritical/supercritical fuel spray and mixture formation in internal combustion engines[J]. Journal of Combustion Science and Technology, 2014, 20(1): 1-9. [18]KIM S K, CHOI H S, KIM Y. Thermodynamic modeling based on a generalized cubic equation of state for kerosene/LOx rocket combustion[J]. Combustion and Flame, 2012, 159(3): 1351-1365. [19]Thermodynamics Research Center (TRC), Texas A&M University, College Station. TRC databases for chemistry and engineering-catalogue [EB/OL]. [2017-04-20]. https:∥www.tamu.edu. [20]ZEBERGMIKKELSEN C K, CISNEROS S, STENBY E H. Viscosity modeling of light gases at supercritical conditions using the friction theory[J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3848-3854. [21]National Institute of Standards and Technology. NIST chemistry web book [EB/OL]. (2017-01-06) [2017-04-20]. http:∥webbook.nist.gov/chemistry/fluid. [22]BANUTIA D, HANNEMANN K. The absence of a dense potential core in supercritical injection: A thermal break-up mechanism[J]. Physics of Fluids, 2016, 28(3): 101-353. [23]BANUTI D T. Crossing the Widom-line―Supercri-tical pseudo-boiling[J]. Journal of Supercritical Fluids, 2015, 98: 12-16. [24]JARCZYK M, PFITZNER M. Large eddy simulation of supercritical nitrogen jets[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, USA: AIAA, 2012.
Options
文章导航

/