基于离散元软件LIGGGHTS构建了球堆积床的三维随机结构模型,通过计算多孔介质的宏观阻力系数及局部孔隙率来验证模型的有效性.以典型的径向切面为研究对象,采用大涡模拟和k-ε湍流模型预测多孔介质内的湍流特性与旋涡分布规律.结果表明,随机结构模型能够预测多孔介质的宏观阻力系数及局部孔隙率.大涡模拟不仅能够描述多孔介质内部直径为 0.4~2.0mm的细小旋涡和大孔隙内的复杂旋涡结构,而且能够模拟局部孔隙内细小旋涡的产生与发展历程,以及大旋涡的拉伸、分裂直至消失的过程,这与实际情况及湍流基本理论的研究结果相符.
A three-dimensional random structure model of pellet packed bed for porous media is built based on the discrete element software of LIGGGHTS. The effectiveness of the random model has been verified by the calculation of the macroscopic flow resistance coefficient and the local porosity. A comparative study on the turbulence characteristics and vortex distribution within the porous structure has been carried out employing large eddy simulation (LES) and the conventional k-ε turbulence model. Simulation results show that the random structure model could predict the local porosity and the macroscopic resistance coefficient of the porous medium effectively. For the complex turbulent flow inside the porous structure, LES could give detailed information of the small vortices with diameter of 0.4-2.0mm within the porous structure and demonstrate the complex vortex structure in large pores of the porous medium. Besides, LES could also record the generation and development of the small vortex, and the process of stretching, splitting and disappearing of the large vortex within the local pores in detail, and the results are more consistent with the reality and the basic theory of turbulence. The LES study on turbulence characteristics in the random pellet packed bed in this paper will lay the foundation for the future simulation of filtration combustion.
[1]MUJEEBU M A, ABDULLAH M Z, MOHAMAD A A, et al. Trends in modeling of porous media combustion[J]. Progress In Energy And Combustion Science, 2010, 36(6): 627-650.
[2]BARRA A J, ELLZEY J L. Heat recirculation and heat transfer in porous burners[J]. Combust Flame, 2004, 137(1/2): 230-241.
[3]YU B H, KUM S M, LEE C E, et al. Combustion characteristics and thermal efficiency for premixed porous media types of burners[J]. Energy, 2013, 53: 343-350.
[4]GAO H B, QU Z G, FENG X B, et al. Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115 (1): 154-161.
[5]STELZNER B, KERAMIOTIS C, VOSS S, et al. Analysis of the flame structure for lean methane-air combustion in porous inert media by resolving the hydroxyl radical[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 3381-3388.
[6]ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48 (2): 89-94.
[7]SONG Y C, JIANG L L, LIU Y, et al. An experimental study on CO2/water displacement in porous media using high-resolution magnetic resonance imaging[J]. International Journal of Greenhouse Gas Control, 2012, 10: 501-509.
[8]ROOZBAHANI M M, HUAT B B K, ASADI A. The effect of different random number distributions on the porosity of spherical particles[J]. Advanced Power Technology, 2013, 24(1): 26-35.
[9]MIAO T J, YU B M, DUAN Y G, et al. A fractal model for spherical seepage in porous media[J]. International Communications in Heat and Mass Transfer, 2014, 58: 71-78.
[10]PEDRAS M H J, DE LEMOS M J S. Computation of turbulent flow in porous media using a low-Reynolds k-ε modeland an infinite array of transversally displaced elliptic rods[J]. Numerical Heat Transfer, 2003, 43(6): 585-602.
[11]LUTSENKO N A. Modeling of heterogeneous combustion in porous media under free convection[J]. Proceedings of the Combustion Institute, 2013, 34 (2): 2289-2294.
[12]NIJEMEISLAND M. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres[J]. AICHE Journal, 2006, 50(5): 906-921.
[13]BASMIL Y, NAOYA F, MASAYASU S. Turbulence-flame interaction and fractal characteristics of H2-air premixed flame under pressure rising condition[J]. Proceedings of the Combustion Institute, 2015, 35 (2): 1277-1285.
[14]周磊, 解茂昭, 罗开红, 等. 大涡模拟在内燃机中应用的研究进展[J]. 力学学报, 2013, 45(4): 467-482.
ZHOU Lei, XIE Maozhao, LUO Kaihong, et al. Large eddy simulation for internal combustion engines: Progress and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 467-482.
[15]刘周, 杨云军, 周伟江, 等. 基于RANS-LES 混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.
LIU Zhou, YANG Yunjun, ZHOU Weijiang, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380.
[16]李科, 胡羽, 黄兴亮, 等. 龙卷旋涡的大涡模拟及能量分离机理[J]. 燃烧科学与技术, 2016, 22(3): 198-205.
LI Ke, HU Yu, HUANG Xingliang, et al. Tornado-like vortex flow and its mechanism of energy separation by large-eddy simulation[J]. Journal of Combustion Science and Technology, 2016, 22(3): 198-205.
[17]ERLEBACHER G, HUSSAINI M Y, SPEZIALE C G, et al. Toward the large-edd simulation of compressible turbulent flows[J]. Journal of Fluid Mechanics, 1992, 238: 155-185.
[18]SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[19]CALIS H P A, NIJENHUIS J, PAIKERT B C, et al. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing[J]. Chemical Engineering Science, 2001, 56 (4): 1713-1720.
[20]BEAR J, CORAPCIOGLU M Y. Fundamentals of transport phenomena in porous media[M]. Netherlands: Springer, 1984, 82: 199-256.
[21]MUELLER G E. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers[J]. Powder Techno-logy, 1992, 72(3): 268-275.