对包括蜗壳的离心压气机整机模型进行了非定常数值模拟,获得不同工况下的非定常流场数据,采用动态模态分解(DMD)方法对设计工况与非稳定工况条件下蜗壳的三维非定常流场进行模态分解与重构.结果表明:在设计工况下,蜗壳内流场主要受到 4.421kHz的长叶片通过频率的影响,而 8.841kHz的长、短叶片通过频率的影响则受到抑制;在非稳定工况下,捕捉到了不稳定特征频率和所对应的流动模态,以及蜗壳内流场沿流向呈螺旋线型变化的速度脉动;基于频率特征的DMD方法得到了三维蜗壳模态.
Unsteady numerical simulations of the centrifugal compressor with and without volute were carried out to investigate the effect of vaneless diffuser and volute on compressor instability. Combined with dynamic mode decomposition (DMD) method, the three-dimensional flow field of the volute is decomposed and reconstructed under design and stall condition. It is shown that the dominating perturbation of volute under design condition is the one induced by main blade passing, while the perturbation with higher frequency due to main and splitter blades is suppressed by the volute. The occurrence of stall in the compressor is delayed by the volute compared with the compressor without volute. A standing wave comes into being in the volute during stall, and the flow filed of volute fluctuates along the tangential direction. The occurrence of volute stall indicates that the volute loses the ability to suppress the instability perturbation, and the compressor is occupied by stall. The application of DMD method on volute provides the detailed flow information under specific perturbation frequency before and after stall.
[1]DAY I J. Stall, surge and 75 years of research[J]. Journal of Turbomachinery, 2016, 138(1): 011001-1-16.
[2]EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Trans ASME, 1955, 77(4): 455-469.
[3]DAY I J. Active suppression of rotating stall and surge in axial compressors[J]. Journal of Turbo-machinery, 1991, 115(1): 40-47.
[4]朱报祯, 郭涛. 离心压缩机[M]. 西安: 西安交通大学出版社, 1989.
ZHU Baozhen, GUO Tao. Centrifugal compressor[M]. Xi’an: Xi’an Jiaotong Unviversity Press, 1989.
[5]VAN DEN BRAEMBUSSCHE R, HNDE B M. Experimental and theoretical study of the swirling flow in centrifugal compressor volutes [EB/OL]. [2017-02-20]. http:∥citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.822.9350&rep=rep1& type=pdf.
[6]HAGELSTEIN D, HILLEWAERT K, VAN DEN BRAEMBUSSCHE R, et al. Experimental and numerical investigation of the flow in a centrifugal compressor volute[J]. Journal of Turbomachinery, 2000, 122(1): 22-31.
[7]HASSAN A S. Influence of the volute design parameters on the performance of a centrifugal compressor of an aircraft turbocharger[J]. Proceedings of the Institution of Mechanical Engineers—Part A: Journal of Power and Energy, 2007, 221(5): 695-704.
[8]AYDER E, VAN DEN BRAEMBUSSCHE R. Numerical analysis of the 3D swirling flow in centrifugal compressor volutes[J]. Journal of Turbomachinery, 1994, 116(3): 462-468.
[9]李杜, 杨策, 王一棣, 等. 涡轮增压器用离心压气机蜗壳流场计算研究[J]. 内燃机学报, 2010, 28(3): 253-259.
LI Du, YANG Ce, WANG Yidi, et al. Numerical study of flow field of volute in a turbocharger centri-fugal compressor[J]. Transactions of CSICE, 2010, 28(3): 253-259.
[10]王磊磊. 离心压气机非轴对称流动特性及进气畸变对内部流场的影响研究[D]. 北京:北京理工大学机械与车辆工程学院, 2015.
WANG Leilei. Investigations of the non-axisymme-tric flow behaviors in centrifugal compressor and the effects of the inlet distortion on the internal flow[D]. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2015.
[11]郭强. 带无叶扩压器的离心压缩机失速现象的实验和数值研究[D]. 上海: 上海交通大学机械与动力工程学院, 2007.
GUO Qiang. Experimental and numerical investigation on stall flow phenomenon in the centrifugal compressor with vaneless diffuser[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University, 2007.
[12]SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28.
[13]DUNNE R, MCKEON B J. Dynamic stall on a pitching and surging airfoil[J]. Experiments in Fluids, 2015, 56(8): 1-15.
[14]ZHU X C, JIA K, DU Z H. Prediction of centrifugal compressor performance from choke through stall with a physical throttle[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montreal, Canada: American Society of Mechanical Engineers, 2015: 1-9.