学报(中文)

基于全控整流技术的电磁发射机

展开
  • 北京工业大学 信息学部, 北京 100124
张加林(1990-),男,河北省保定市人,博士,目前主要从事全控整流器及其应用研究.

基金资助

国家重点研发计划(2016YFC0303103)资助项目

Pulse Width Modulation Rectifier Based Electromagnetic Transmitter

Expand
  • Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

摘要

为了改善电磁发射机的性能,减小电磁发射机的体积和质量,设计了一种基于脉冲宽度调制(PWM)整流技术的电磁发射机电路结构,并对其中永磁同步发电机(PMSG)的PWM整流器的控制结构和参数进行设计.在同步旋转坐标系下,建立PMSG中PWM整流器的数学模型;根据电动机双闭环调速理论设计了转子磁链定向的PWM整流器电压电流双闭环控制系统,以实现有功电流和无功电流的解耦控制;为了提高系统的动态性能和稳定性,提出PWM整流器比例积分(PI)控制器的参数整定方法.仿真和实验结果表明,采用PWM整流技术的电磁发射机不仅可以满足地球物理探测的实际需要,而且具有结构简单、功率因数高和电流谐波小等优点.所提出控制器设计方法能够确定PI参数,从而简化了系统设计.

本文引用格式

张加林,张一鸣,丁建智,高俊侠 . 基于全控整流技术的电磁发射机[J]. 上海交通大学学报, 2018 , 52(9) : 1023 -1030 . DOI: 10.16183/j.cnki.jsjtu.2018.09.003

Abstract

In order to improve the power factor and power density of electromagnetic transmitter, and make the transmitter small in size and light in weight, a novel electromagnetic transmitter circuit based on pulse width modulation (PWM) rectifier is presented in this paper. Parameters for the permanent synchronous generator (PMSG) PWM rectifier in the transmitter are designed. First, the mathematical model of the PMSG PWM rectifier is established, and then based on the flux oriented control theory in motor speed control system, a double closed loop control strategy, which consists of a decoupling current controller and an outer voltage controller is proposed. The active and reactive current decoupling control is obtained. To improve the dynamic performance and stability of the PMSG PWM rectifier, parameters in the PI controller are designed. Simulation and experimental results show that the proposed transmitter can not only meet the needs of geophysical exploration, but also has the advantages of simple structure, high power factor and low current harmonics. The proposed design method of controller can effectively determine the PI parameters and simplify control system.

参考文献

[1]ZHDANOV M S. Electromagnetic geophysics: Notes from the past and the road ahead[J]. Geophysics, 2010, 75(5): 75A49-75A66. [2]AN Z G, DI Q Y, FU C M, et al. Geophysical evidence through a CSAMT survey of the deep geological structure at a potential radioactive waste site at Beishan, Gansu, China[J]. Journal of Environmental and Engineering Geophysics, 2007, 18(1): 43-54. [3]谭国贞, 付志红, 周雒维, 等. 瞬变电磁发射机控制系统设计[J]. 电测与仪表, 2006, 43(3): 8-12. TAN Guozhen, FU Zhihong, ZHOU Luowei, et al. A design of control for transient electromagnetic transmitter[J]. Electrical Measurement & Instrumentation, 2006, 43(3): 8-12. [4]蒋奇云. 广域电磁测深仪关键技术研究[D]. 长沙: 中南大学地球科学与信息物理学院, 2010. JIANG Qiyun. Study on the key technology of wide field electromagnetic sounding instrument[D]. Chang-sha: School of Geoscience and Info-Physics, Central South University, 2010. [5]YU F, ZHANG Y M. Modeling and control method for high-power electromagnetic transmitter power supplies[J]. Journal of Power Electronics, 2013, 13(4): 679-691. [6]XUE K C, WANG S, LIN J, et al. Loss analysis and air-cooled design for a cascaded electrical source transmitter[J]. Journal of Power Electronics, 2015, 15(2): 530-543. [7]冯金兰. 基于DSP & FPGA的地面电磁探测发射机的设计与研究[D]. 北京: 北京工业大学信息学部, 2014. FENG Jinlan. Research of surface electromagnetic probe transmitter based on DSP & FPGA[D]. Beijing: Faculty of Information Technology, Beijing University of Technology, 2014. [8]Zonge International. GDP-32/24 multifunction transmitter specification sheet[EB/OL]. (2016-07-14)[2017-03-05]. http:∥www.zonge.com/transmitter.html. [9]真齐辉, 底青云, 刘汉北. 励磁控制的CSAMT发送机若干技术研究[J]. 地球物理学报, 2013, 56(11): 3751-3760. ZHEN Qihui, DI Qingyun, LIU Hanbei. Key technology study on CSAMT transmitter with excitation control[J]. Chinese Journal Geophysics, 2013, 56(11): 3751-3760. [10]徐德鸿, 李睿, 刘昌金, 等. 现代整流技术: 有源功率因数校正技术[M]. 北京: 机械工业出版社, 2013: 8-16. XU Dehong, LI Rui, LIU Changjin, et al. Modern rectifier technology: Active power factor correction technology[M]. Beijing: Machinery Industry Press, 2013: 8-16. [11]WU R, DEWAN S B, SLEMON G R. Analysis of an ac-to-dc voltage source converter using PWM with phase and amplitude control[J]. IEEE Transactions on Industry Applications, 1991, 27(2): 355-364. [12]杨勇, 阮毅. 三相并网逆变器直接功率控制[J]. 电力自动化设备, 2011, 31(9): 54-59. YANG Yong, RUAN Yi. Direct power control for three-phase grid-connected inverters[J]. Electric Power Automation Equipment, 2011, 31(9): 54-59. [13]BOUAFIA A, GAUBERT J P, KRIM F. Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM)[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 228-236. [14]汪万伟, 尹华杰, 管霖. 双闭环矢量控制的电压型PWM整流器参数整定[J]. 电工技术学报, 2010, 25(2): 67-72. WANG Wanwei, YIN Huajie, GUAN Lin. Parameter setting for double closed-loop vector control of voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 67-72. [15]石健将, 李荣贵, 张平, 等. 基于新型电压电流双闭环控制的轴带发电机PWM整流器研究[J]. 电工技术学报, 2014, 29(6): 189-195. SHI Jianjiang, LI Ronggui, ZHANG Ping, et al. Research on shaft-generator PWM rectifier based on novel voltage-current dual-loop control[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 189-195. [16]张越雷, 高剑, 宋广兴, 等. PWM整流器控制下电感参数对永磁同步发电机性能的影响[J]. 微电机, 2016, 49(6): 17-20. ZHANG Yuelei, GAO Jian, SONG Guangxing, et al. The influence of inductance parameters on the performance of permanent magnet synchronous generator system controlled by PWM inverter[J]. Micromotors, 2016, 49(6): 17-20. [17]王成元, 夏加宽, 孙宜标. 现在电机控制技术[M]. 2版. 北京: 机械工业出版社, 2015: 123-126. WANG Chengyuan, XIA Jiakuan, SUN Yibiao. Modern motor control technology[M]. 2nd ed. Beijing: Machinery Industry Press, 2015: 123-126. [18]张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2012: 88-105. ZHANG Xing, ZHANG Chongwei. PWM rectifier and its control strategy[M]. Beijing: Machinery Industry Press, 2012: 88-105.
Options
文章导航

/