学报(中文)

非线性畸形波所致的平台底部砰击载荷及结构响应数值模拟

展开
  • 上海交通大学 海洋工程国家重点实验室; 高新船舶与深海开发装备协同创新中心, 上海 200240
秦浩(1990-), 男, 山东省烟台市人, 博士生, 主要研究方向为畸形波与海洋结构物相互作用.

网络出版日期: 2018-09-28

基金资助

国家自然科学基金资助项目(51239007)

Numerical Simulations of Impact Loads and Structural Responses of Bottom Decks of Platforms Caused by Nonlinear Freak Waves

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

Online published: 2018-09-28

摘要

基于求解2维N-S方程和流体体积(VOF)法建立数值水槽,采用Peregrine呼吸子解模型进行非线性畸形波的造波,采用2维有限元法对平台下甲板结构离散,并以一种流固耦合算法针对非线性畸形波平台底部砰击进行数值模拟.计算了该砰击问题中非线性畸形波引起的砰击载荷,并揭示了其与相同波高、波长2阶规则波引起砰击载荷的不同.考虑平台下甲板结构为弹性体的结构响应,在平台下甲板结构存在垂向初速度的条件下得到了平台下甲板结构位移时历,并采用快速傅里叶变换(FFT)对频率响应进行了分析.

本文引用格式

秦浩,唐文勇,薛鸿祥 . 非线性畸形波所致的平台底部砰击载荷及结构响应数值模拟[J]. 上海交通大学学报, 2018 , 52(9) : 1009 -1016 . DOI: 10.16183/j.cnki.jsjtu.2018.09.001

Abstract

In order to study the impact on offshore platforms caused by nonlinear freak waves, a numerical wave tank is built, in which the incompressible Navier-Stokes equations are solved, with the free surfaces reconstructed using a VOF method. Nonlinear freak waves based on the Peregrine breather solution are generated. A fluid-structure interaction (FSI) algorithm is used to calculate the structural response of the bottom deck, which is discretized with the finite element method (FEM). The impact loads underneath a platform model are calculated and compared with the ones caused by the 2nd-order regular waves with the same wave lengths and heights to reveal the unique features of the impact caused by nonlinear freak waves. The structural response of the bottom deck is calculated using the FSI algorithm and processed with an FFT method to analyze the wetted vibration. Additionally, the influence of the vertical initial velocity is considered during the structural response simulations.

参考文献

[1]邓燕飞, 杨建民, 李欣, 等. 波浪水池中畸形波生成的研究综述[J]. 船舶力学, 2016, 20(8): 1059-1070. DENG Yanfei, YANG Jianmin, LI Xin, et al. A review on the freak wave generation in the wave tank[J]. Journal of Ship Mechanics, 2016, 20(8): 1059-1070. [2]KHARIF C. Physical mechanisms of the rogue wave phenomenon[J]. European Journal of Mechanics—B/Fluids, 2003, 22(6): 603-634. [3]裴玉国. 畸形波的生成及基本特性研究[D]. 大连: 大连理工大学, 2007. PEI Yuguo. The generation of freak waves and its behaviors[D]. Dalian: Dalian University of Technology, 2007. [4]HU Z, TANG W, XUE H. A probability-based superposition model of freak wave simulation[J]. Applied Ocean Research, 2014, 47(9): 284-290. [5]ZAKHAROV V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J]. Journal of Applied Mechanics & Technical Physics, 1968, 9(2): 190-194. [6]PEREGRINE D H. Water waves, nonlinear Schrdinger equations and their solutions[J]. Anziam Journal, 1983, 25(1): 16-43. [7]CHABCHOUB A, HOFFMANN N P, AKHMEDIEV N. Rogue wave observation in a water wave tank.[J]. Physical Review Letters, 2011, 106(20): 309-313. [8]PERI R, HOFFMANN N, CHABCHOUB A. Initial wave breaking dynamics of Peregrine-type rogue waves: A numerical and experimental study[J]. European Journal of Mechanics—B/Fluids, 2015, 49(12): 71-76. [9]HU Z, TANG W, XUE H, et al. Numerical study of Rogue waves as nonlinear Schrdinger breather solutions under finite water depth[J]. Wave Motion, 2015, 52: 81-90. [10]CLAUSS F, SCHMITTNER C E, STUTZ K. Freak wave impact on semisubmersibles-time-domain analysis of motions and forces[C]∥The Thirteenth International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA: [s.n.], 2003. [11]ZHAO X, YE Z, FU Y, et al. A CIP-based numerical simulation of freak wave impact on a floating body[J]. Ocean Engineering, 2014, 87(5): 50-63. [12]DENG Y, YANG J, ZHAO W, et al. Freak wave forces on a vertical cylinder[J]. Coastal Engineering, 2016, 114: 9-18. [13]LIN P. A fixed-grid model for simulation of a moving body in free surface flows[J]. Computers & Fluids, 2007, 36(3): 549-561. [14]丁仕风, 唐文勇, 张圣坤. 速度突变情况下液化天然气船液舱内晃荡问题的仿真[J]. 上海交通大学学报, 2008, 42(6): 919-923. DING Shifeng, TANG Wenyong, ZHANG Shengkun. Simulation of liquid sloshing in the cabin caused by liquefied natural gas ship’s variable speed[J]. Journal of Shanghai Jiao Tong University, 2008, 42(6): 919-923. [15]CHIANG C M. The applied dynamics of ccean surface waves[M]. [s.l.]: Wiley, 1983. [16]HU Z, TANG W, XUE H, et al. Numerical simulations using conserved wave absorption applied to Navier-Stokes equation model[J]. Coastal Engineering, 2015, 99: 15-25. [17]BAARHOLM R, FALTINSEN O M. Wave impact underneath horizontal decks[J]. Journal of Marine Science and Technology, 2004, 9(1): 1-13.
Options
文章导航

/