学报(中文)

基于广义Maxwell模型的形状记忆聚合物力学本构

展开
  • 1. 上海交通大学 空间结构研究中心, 上海 200240; 2. 上海宇航系统工程研究所, 上海 201108
樊鹏玄(1996-),男,贵州省六盘水市人,博士生,从事智能材料与结构研究.

收稿日期: 2017-03-31

基金资助

航天先进技术联合研究中心技术创新项目(USCAST2015-24,2016-21)

The Mechanical Constitutive Model of Shape Memory Polymer Based on Generalized Maxwell Model

Expand
  • 1. Space Structure Research Center-SSRC, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Aerospace System Engineering Research Institute, Shanghai 201108, China

Received date: 2017-03-31

摘要

为揭示形状记忆效应的黏弹性力学机制并进行形状记忆过程模拟,先推导出积分形式的广义Maxwell本构方程,再结合时温叠加原理推导出形状记忆过程的形状固定率公式及应力应变演化方程.形状固定率公式显示:增大“固定约束时长/拉伸阶段时长”的比值可增大形状固定率.应变演化方程揭示:随温度降低偏移系数变小,释放约束后应变演化方程中的时间被缩减,使应变恢复速度趋近于0;随温度升高偏移系数变大,对时间的缩减效应减弱,应变发生恢复.应用Abaqus软件的黏弹性力学模型,基于Arrhenius方程和Williams-Landel-Ferry(WLF)方程,通过二次开发建立形状记忆聚合物结构分析的数值模拟方法.采用环氧基形状记忆聚合物进行拉伸-松弛实验测定数值模拟中需要输入的材料参数,并进行形状记忆过程实验和数值模拟.结果表明,所提数值模拟方法能有效描述形状记忆过程,且针对实验所用的环氧基形状记忆聚合物,Arrhenius方程较WLF方程具有更高的计算精度.

本文引用格式

樊鹏玄1,陈务军1,赵兵1,胡建辉1,张大旭1,房光强2,彭福军2 . 基于广义Maxwell模型的形状记忆聚合物力学本构[J]. 上海交通大学学报, 2018 , 52(8) : 969 -975 . DOI: 10.16183/j.cnki.jsjtu.2018.08.013

Abstract

In order to reveal the viscoelastic mechanism and conduct simulation of SM (shape memory) effect, the stress and strain evolutions and fixity ratio equation were derived from the generalized Maxwell model with time temperature superposition principle. Fixity ratio equation shows that the shape fixity ratio can be lifted by raising the ratio of holding time over tension time. The evolution equations reveal the viscous-elastic nature of the SM effect. The shift function is decreased because of the dropping of temperature, which will reduce the actual time and result in delaying of shape recovery. When the temperature raise up, the reducing effect is weakened, the shape recovery will occur. Simulation methods are established based on the viscoelastic model in Abaqus and user subroutine of Arrhenius equation and WLF equation. The material parameters of epoxy shape memory polymer are obtained by tension-relaxation tests. Then the test and simulation of SM process were conducted. Results indicate that the simulation methods are accurate enough, and Arrhenius equation results in more accurate simulations than WLF equation for epoxy SMP used in the tests.

参考文献

[1]赵建宝, 吴雪莲, 戈晓岚, 等. 形状记忆聚合物及其应用前景[J]. 材料导报, 2015, 29(21): 75-80. ZHAO Jianbao, WU Xuelian, GE Xiaolan, et al. Shape memory polymer and its application prospects[J]. China Materials Review, 2015, 29(21): 75-80. [2]ZHENG N, XIE T, FANG G Q, et al. High strain epoxy shape memory polymer[J]. Polymer Chemistry, 2015, 6(16): 3046-3053. [3]BHATTACHARYYA A, TOHUSHI H. Analysis of the isothermal mechanical response of a shape memory polymer rheological model[J]. Polymer Engineering and Science, 2000, 40(12): 2498-2510. [4]PIECZYSKA E A, MAJ M, KOWALCZYK-GAJEWSKA K, et al. Mechanical and infrared thermo-graphy analysis of shape memory polyurethane[J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2553-2560. [5]DIANI J, LIU Y P, GALL K. Finite strain 3D thermoviscoelastic constitutive model for shape memory polymers[J]. Polymer Engineering & Science, 2006, 46(4): 486-492. [6]CHEN Y C, LAGOUDAS D C. A constitutive theory for shape memory polymers. Part II[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1766-1778. [7]GILORMINI P, DIANI J. On modeling shape memory polymers as thermoelastic two-phase composite materials[J]. Comptes Rendus Mécanique, 2012, 340: 338-348. [8]YU K, GE Q, JERRY Q H. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communications, 2014, 5(2): 3066. [9]DIANI J, GILORMINI P, FREDY C, et al. Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity[J]. International Journal of Solids and Structures, 2012, 49(5): 793-799. [10]吕海宝, 冷劲松, 杜善义. 形状记忆聚合物力学行为及其物理机制[J]. 固体力学学报, 2017, 38(1): 1-12. L Haibao, LENG Jingsong, DU Shanyi. Working mechanism for the mechanical behavior of shape memory polymer[J]. Chinese Journal of Solid Mechanics, 2017, 38(1): 1-12. [11]章巧芳, 林文武, 张钦, 等. 热驱动形状记忆聚合物三维力学本构模型[J]. 浙江工业大学学报, 2015, 43(1): 43-46. ZHANG Qiaofang, LIN Wenwu, ZHANG Qin, et al. 3D constitutive model of temperature-induced shape memory polymers[J]. Journal of Zhejiang University of Technology, 2015, 43(1): 43-46. [12]周博, 刘彦菊, 冷劲松. 形状记忆聚合物的宏观力学本构模型[J]. 中国科学: 物理学 力学 天文学, 2010, 40(7): 896-903. ZHOU Bo, LIU Yanju, LENG Jingsong. Macro constitutive model of shape memory polymers[J]. Scientia Sinica Phys, Mech & Astron, 2010, 40(7): 896-903. [13]时光辉. 形状记忆聚合物及其智能结构热力学行为研究[D]. 北京: 北京工业大学机械工程与应用电子技术学院, 2013. SHI Guanghui. Thermomechanical properties of shape memory polymer and its smart structures[D]. Beijing: College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, 2013. [14]谭巧. 形状记忆环氧聚合物及其复合材料的典型力学行为研究[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2015. TAN Qiao, Typical mechanical behavior of epoxy shape memory polymer and its composite[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2015. [15]罗玲. 基于粘弹性理论的树脂及其纤维复合材料的形状记忆数值模拟[D]. 济南: 山东大学材料科学与工程学院, 2013. LUO Ling. Simulation of shape memory properties for resin and their reinforced composites based on viscoelasticity[D]. Jinan: School of Material Science and Engineering, Shandong University, 2013. [16]DASSUALT S. Abauqs theory guide[M]. Providence: Dassault Systèmes Simulia Corp, 2016. [17]游晋, 房光强, 陈务军, 等. 形状记忆环氧树脂及其碳纤维织物增强环氧树脂的动态力学性能[J]. 复合材料学报, 2017, 34(1): 1-7. YOU Jin, FANG Guangqiang, CHEN Wujun, et al. Dynamic mechanical properties of shape memory epoxy polymer and 4-harness satin carbon fiber weave reinforced composites[J]. Acta Materiae Compositae Sinca, 2017, 34(1): 1-7. [18]GOH S M, CHARALAMBIDES M N, WILLIAMS J G. Determination of the constitutive constants of non-linear viscoelastic materials[J]. Mechanics of Time-Dependent Materials, 2004, 8(3): 255-268. [19]GUTIERREZ-LEMINI D. Engineering viscoelasticity[M]. New York: Springer Science & Business Media, 2014.
Options
文章导航

/