学报(中文)

结冰对风力机载荷的影响

展开
  • 上海交通大学 机械与动力工程学院, 上海 200240
胡良权(1987-),男,江西省赣州市人,博士生,主要研究方向为风力机叶片结冰数值模拟.

收稿日期: 2017-10-13

基金资助

国家自然科学基金(51506123),国家博士后科学基金(2015M571563)

Load of Wind Turbine Affected by Icing

Expand
  • School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2017-10-13

摘要

针对风力机叶片结冰问题,以NREL Phase VI风力机为研究对象,采用Fluent和气动弹性程序FAST,研究了不对称结冰(只有1个叶片结冰)和对称结冰(2个叶片都结一致的冰)对风力机载荷的影响.结果表明:结冰会导致叶片气动性能下降,从而导致风轮转矩减小;对称结冰可使风轮转矩减小量达 34.99%;不对称结冰会引起低速轴剪切力不平衡,增加低速轴疲劳载荷;对称结冰可使风轮轴向推力、叶根力矩和塔基力矩减小量分别达 6.07%,40.32% 和 37.32%.

关键词: 风力机; 叶片结冰; 载荷

本文引用格式

胡良权,陈进格,沈昕,竺晓程,杜朝辉 . 结冰对风力机载荷的影响[J]. 上海交通大学学报, 2018 , 52(8) : 904 -909 . DOI: 10.16183/j.cnki.jsjtu.2018.08.004

Abstract

Aiming at the wind turbine blade icing problem, the NREL Phase VI wind turbine was used as the research object. The Fluent and the aero-elasticity program FAST were used to study the load effects of the asymmetry icing (i.e., just one blade is covered with ice) and the symmetry icing (i.e., two blades are covered with ice). Results show that the icing can decrease the blade aerodynamic performance, its rotor torque will be decreased. The symmetry icing can decrease the rotor torque up to 34.99%. The asymmetry icing can induce the unbalance shear force on the low speed shaft, and will increase the low speed shaft fatigue load. The symmetry icing can decrease the rotor thrust, the blade root moment and the tower base moment up to 6.07%, 40.32% and 37.32%, respectively.

Key words: wind turbine; blade icing; load

参考文献

[1]朱程香, 王珑, 孙志国, 等. 风力机叶片翼型的结冰数值模拟研究[J]. 空气动力学学报, 2011, 29(4): 522-528. ZHU Chengxiang, WANG Long, SUN Zhiguo, et al. Numerical study of wind turbine blade airfoil ice accretion[J]. Acta Aerodynamic Sinica, 2011, 29(4): 522-528. [2]HAN Yiqiang, PALACIOS J, SCHMITZ S. Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109(4): 55-67. [3]刘国特, 陈彦, 阳林. 风力机翼型覆冰形态及其失速特性研究[J]. 太阳能学报, 2016, 37(4): 1024-1029. LIU Guote, CHEN Yan, YANG Lin. Research of icing morphology and stall characteristics of airfoil for wind turbine[J]. Acta Energiae Solaris Sinica, 2016, 37(4): 1024-1029. [4]付忠广, 石黎. 覆冰条件下风力机翼型气动性能的研究[J]. 太阳能学报, 2016, 37(3): 609-616. FU Zhongguang, SHI Li. Aerodynamic performance of wind turbine airfoil under icing conditions[J]. Acta Energiae Solaris Sinica, 2016, 37(3): 609-616. [5]任晓凯. 小型风力发电机叶片覆冰的气动力学特性研究[D]. 重庆: 重庆大学电气工程学院, 2016. REN Xiaokai. Study on the aerodynamic characteristics of small wind turbine blade icing[D]. Chongqing: School of Electrical Engineering, Chongqing University, 2016. [6]李岩, 刘钦东, 王绍龙, 等. 小型垂直轴风力机叶片结冰风洞试验与数值计算[J]. 空气动力学学报, 2016, 34(5): 568-572. LI Yan, LIU Qindong, WANG Shaolong, et al. Wind tunnel test and numerical simulation on blade icing of small-scaled vertical axis wind turbine[J]. Acta Aerodynamic Sinica, 2016, 34(5): 568-572. [7]ETEMADDAR M, HANSEN M O L, MOAN T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy, 2014, 17(2): 241-265. [8]HUDECZ A. Icing problems of wind turbine blades in cold climates[D]. Copenhagen: Technical University of Denmark, 2013. [9]SAGOL E. Three dimensional numerical prediction of icing related power and energy losses on a wind turbine[D]. Montreal: University of Montreal, 2014. [10]HANSEN M O L. Aerodynamics of wind turbines[M]. 2nd ed. London, UK: Earthscan, 2008. [11]HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment Phase VI: Wind tunnel test configurations and available data campaigns: TP-500-29955[R]. Golden, Colorado: NREL, 2001. [12]BURTON T, JENKINS N, SHARPE D, et al. Wind energy handbook[M]. Chichester: John Wiley & Sons, 2011. [13]JONKMAN J M, BUHL M L. FAST user’s guide updated august 2005: TP-500-38230[R]. Golden, Colorado: NREL, 2005. [14]BARBER S, WANG Y, JAFARI S, et al. The impact of ice formation on wind turbine performance and aerodynamics[J]. Journal of Solar Energy Engineering, 2011, 133(1): 311-328. [15]BATTISTI L. Wind turbines in cold climates[M]. Switzerland: Springer International Publishing, 2015. [16]HU L Q, ZHU X C, HU C X, et al. Calculation of the water droplets local collection efficiency on the wind turbines blade[J]. Journal of Energy Resources Technology, 2017, 139(5): 1211-1220. [17]NREL Technical Report. 2014, AirFoilPrep user’s guide[EB/OL]. (2017-04-20)[2017-10-13], https:∥nwtc.nrel.gov/AirFoilPrep. [18]IEC. Wind turbines—Part 1: Design requirements[M]. 3rd nd. Switzerland: International Electrotechnical Commission, 2005. [19]NREL Technical Report. 2012, TurbSim user’s guide[EB/OL].(2017-04-20)[2017-10-13], https:∥nwtc. nrel.gov/TurbSim.
Options
文章导航

/