学报(中文)

复合材料圆管芯材横向剪切性能

展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240; 2. 上海卫星工程研究所,上海 201109
江丙云(1985-),男,安徽省亳州市人,博士生,工程师,主要从事复合材料研究和工程应用.

收稿日期: 2017-09-18

  网络出版日期: 2018-08-28

基金资助

国家自然科学基金(51175335, 51675331)

Research on Transverse Shear Property of Composite Circular Cell Honeycomb

Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2. Shanghai Institute of Satellite Engineering, Shanghai 201109, China

Received date: 2017-09-18

  Online published: 2018-08-28

摘要

分别采用解析法、数值法和双剪试验对碳纤维增强复合材料圆管芯材(碳管芯材)的横向剪切刚度进行研究,得到了碳管芯材的等效横向剪切模量和修正系数.采用层压板理论的刚度矩阵计算方法求解碳管所用层压板的面内剪切模量,并结合碳管芯材的矩阵胞元计算得到芯材横向剪切模量的解析解;使用有限元方法对双层碳管芯材建立碳管芯材双剪有限元模型,通过数值分析得到碳管芯材等效横向剪切模量的数值解;应用试验结果对解析解和数值解进行修正,获得的修正系数为碳管芯材力学性能研究及航天器结构应用提供了重要参数.

本文引用格式

江丙云1,孔祥宏2,周徐斌2,李大永1 . 复合材料圆管芯材横向剪切性能[J]. 上海交通大学学报, 2018 , 52(8) : 898 -903 . DOI: 10.16183/j.cnki.jsjtu.2018.08.003

Abstract

The transverse shear stiffness of carbon fiber reinforced plastics (CFRP) circular cell honeycomb (CCH) was studied using analytical method, numerical method and experiments, and the equivalent transverse shear modulus of CFRP CCH was found. The in-plane shear modulus of the laminate used for CCH was found by calculating the stiffness of laminate, and the analytical solution of shear modulus of CCH was obtained using a rectangular representative volume element (RVE). Configuration of composite tubes was designed according to the finite element (FE) analyses of CCH. The numerical solution of shear modulus of CCH was found by FE analysis using twin-shear FE model of CCH. The analytical and numerical solutions were corrected using experimental results. The correction coefficient was found, and it is a very important parameter for the study of mechanical property and application of CCH.

参考文献

[1]杨智勇, 解永杰, 张博明, 等.国外碳纤维复合材料空间反射镜技术研究与应用进展[J].光学技术, 2017, 43(1): 90-96. YANG Zhiyong, XIE Yongjie, ZHANG Boming, et al. Research and application of foreign CFRP composite mirror technology[J].Optical Technique, 2017, 43(1): 90-96. [2]BARBER G J, BRAEM A, BROOK N H, et al.Development of lightweight carbon-fiber mirrors for the RICH 1 detector of LHCb[J]. Nuclear Instruments and Methods in Physics Research A, 2008, 593: 624-637. [3]ROMEO R C, MARTIN R N.Progress in 1m-class, lightweight, CFRP composite mirrors for ULTRA telescope[C]∥Optomechanical Technologies for Astronomy. Bellingham: SPIE, 2006: 62730S-1-62730S-12. [4]夏利娟, 金咸定, 汪庠宝.卫星结构蜂窝夹层板的等效计算[J].上海交通大学学报, 2003, 37(7): 999-1001. XIA Lijuan, JIN Xianding, WANG Yangbao. Equivalent analysis of honeycomb sandwich plates for satellite structure[J]. Journal of Shanghai Jiao Tong University, 2003, 37(7): 999-1001. [5]邓宗白, 闫景玉.对铝蜂窝夹层板Y等效模型的动力学数值仿真[J].机械与电子, 2013(4): 15-18. DENG Zongbai, YAN Jingyu. Dynamic numerical simulation of aluminum honeycomb sandwich plates Y equivalent mode[J]. Machinery and Electronics, 2013(4): 15-18. [6]QIU K, MING W, SHEN L, et al. Study on the cutting force in machining of aluminum honeycomb core material[J]. Composite Structures, 2017, 164: 58-67. [7]CHUNG J, WAAS A M. Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I. Experiments[J]. International Journal of Impact Engineering, 2002, 27(7): 729-754. [8]梁森, 雒磊.密排圆形胞元蜂窝面内等效弹性参数的模拟仿真[J].四川兵工学报, 2013, 34(12): 78-83. LIANG Sen, LUO Lei. Simulation of the in-plane equivalent elastic parameters for closely arranged circular cell honeycomb[J]. Journal of Sichuan Ordnance, 2013, 34(12): 78-83. [9]CERNESCU A, ROMANOFF J, REMES H, et al. Equivalent mechanical properties for cylindrical cell honeycomb core structure[J]. Composite Structures, 2014, 108: 866-875. [10]梁森, 陈花玲, 梁天锡.圆柱形胞元蜂窝夹芯板梁理论的研究[J].复合材料学报, 2005, 22(2): 137-142. LIANG Sen, CHEN Hualing, LIANG Tianxi. Theory of sandwich plate and beam for a circular cell honeycomb[J]. Acta Materiae Compositae Sinica, 2005, 22(2): 137-142.
Options
文章导航

/