学报(中文)

基于经皮能量传输的人工肛门括约肌生物电磁相容性研究

展开
  • 1. 上海大学 机电工程与自动化学院, 上海 200072; 2. 上海市电站自动化技术重点实验室, 上海 200072
昝鹏(1981-),男,山东省青岛市人,副研究员,从事人工器官和生物信息处理研究.

收稿日期: 2017-07-11

基金资助

国家自然科学基金资助项目(31570998)

Research on Bio-Electromagnetic Compatibility of Artificial Anal Sphincter Based on Transcutaneous Energy Transfer

Expand
  • 1. School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China; 2. Shanghai Key Laboratory of Power Station Automation Technology, Shanghai 200072, China

Received date: 2017-07-11

摘要

针对人工肛门括约肌的生物电磁相容性问题,通过对人体断层照片进行图像分割实现了组织的划分和识别,建立了包含40种生物组织的人体电磁模型.运用时域有限差分法,计算了经皮能量传输系统对生物组织产生的辐射剂量,获得了人体不同组织在该电磁场中的比吸收率分布情况,并根据国际人体电磁安全标准对其进行了深入分析.仿真结果表明,经皮能量传输系统在发射功率为1.5W,谐振频率为358kHz的实验环境下对人体组织具有良好的生物相容性.

本文引用格式

昝鹏1,2,张春东1,刘颜凯1,高志远1 . 基于经皮能量传输的人工肛门括约肌生物电磁相容性研究[J]. 上海交通大学学报, 2018 , 52(8) : 997 -1002 . DOI: 10.16183/j.cnki.jsjtu.2018.08.017

Abstract

Bio-electromagnetic compatibility for artificial anal sphincter is investigated in this paper. Through segmentation of the image, the tissues are divided and identified. Electromagnetic model of human body is established with 40 kinds of tissues. The radiation dose of the transcutaneous energy transfer system on biological tissues is calculated using the finite difference time domain (FDTD) method. The specific absorption rate distribution of different tissues is obtained in the electromagnetic field. The safety analysis is carried out according to the international standard for electromagnetic safety of human body. The simulation results show that the transcutaneous energy transfer system has good biocompatibility to human tissues when transmitting power is 1500mW and resonant frequency is 358kHz in the experimental environment.

参考文献

[1]ZAN P, LIU J, JIANG E, et al. Assessment and in vitro experiment of artificial anal sphincter system based on rebuilding the rectal sensation function[J]. International Journal of Artificial Organs, 2014, 37(5): 392-401. [2]克磊, 颜国正, 刘志强, 等. 人工肛门括约肌性能与生物相容性的动物实验[J]. 上海交通大学学报, 2014, 48(2): 193-198. KE Lei, YAN Guozheng, LIU Zhiqiang, et al. In vivo research of performance and biocompatibility of an artificial anal sphincter[J]. Journal of Shanghai Jiao Tong University, 2014, 48(2): 193-198. [3]LU K, NGUANG S K. Design of auto-tuning capacitive power transfer system for wireless power transfer[J]. International Journal of Electronics, 2016, 103(9): 1430-1445. [4]BOCAN K N, SEJDIC E. Adaptive transcutaneous power transfer to implantable devices: A state of the art review[J]. Sensors, 2016, 16(3): 393. [5]BASAR M R, AHMAD M Y, CHO J, et al. Application of wireless power transmission systems in wireless capsule endoscopy: An overview[J]. Sensors, 2014, 14(6): 10929-10951. [6]SHIBA K, ZULKIFLI N E B, ISHIOKA Y. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer[J]. Journal of Artificial Organs, 2016, 20(2): 1-7. [7]KE L, YAN G, WANG Z, et al. Design and assessment of novel artificial anal sphincter with adaptive transcutaneous energy transfer system[J]. Journal of Medical Engineering & Technology, 2015, 39(2): 159-167. [8]马官营, 颜国正, 何秀. 基于电磁感应的消化道内微系统的无线供能[J]. 上海交通大学学报, 2008, 42(5): 798-802. MA Guanying, YAN Guozheng, HE Xiu. The wireless power delivery for dastrointestinal microsystems based on electromagnetic coupling[J]. Journal of Shanghai Jiao Tong University, 2008, 42(5): 798-802. [9]WU J, LEI Y. Analytical expression to impedance for solenoid coil with a coaxial cylindrical ferrite core of finite length[J]. Journal of Physics D Applied Physics, 2002, 35(6): 570-575. [10]SPITZER V, ACKERMAN M J, SCHERZINGER A L, et al. The visible human male: A technical report[J]. Journal of the American Medical Informatics Association Jamia, 1996, 3(2): 118-130. [11]SALAHUDDIN S, PORTER E, KREWER F, et al. Optimised analytical models of the dielectric properties of biological tissue[J]. Medical Engineering & Physics, 2017, 43: 103-111. [12]GABRIEL S, LAU R W, GABRIEL C. The dielectric properties of biological tissues[J]. Physics in Medicine and Biology, 1996, 41(11): 2271-2293. [13]SIMON W, BAGGEN R, LAUER A. EMPIRE XCcel: Efficient simulation of RF MEMS and antennas with XPU FDTD technology[C] ∥IEEE International Symposium on Antennas and Propagation & Usnc/ursi National Radio Science Meeting. Orlando: IEEE, 2013: 2327-2328. [14]MARTENS L, MOERLOOSE J D, ZUTTER D D, et al. Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone[J]. Radio Science, 2016, 30(1): 283-290. [15]MAMMOUDI H, DURNEY C H, JOHNSON C C. Comparison of the average specific absorption rate in the ellipsoidal conductor and dielectric models of humans and monkeys at radio frequencies[J]. Radio Science, 2016, 12(6S): 65-72. [16]MCROBBIE D. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)[J]. Health Physics, 2010, 99(6): 818. [17]BOLTON L B, BENNETT C, RICHARDS H, et al. Letters to the editor—Comment on “a new IEEE standard for safety levels with respect to human exposure to radio-frequency radiation”[J]. Antennas & Propagation Magazine IEEE, 2006, 48(4): 129-130.
Options
文章导航

/