学报(中文)

航天器内部多磁源分辨技术

展开
  • 北京卫星环境工程研究所, 北京 100094
徐超群(1985-),男,陕西省宝鸡市人,博士生,研究方向为航天器磁环境工程.E-mail: xucq111@163.com.

收稿日期: 2017-04-25

基金资助

国家重点研发计划(2016YFB0501304)

Multi-Magnetic Source Discrimination Technology Inside the Spacecraft

Expand
  • Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China

Received date: 2017-04-25

摘要

针对航天器内部多磁源分辨研究中非线性磁场方程解析难的问题,建立了航天器多磁偶极子模型,利用高斯-牛顿法,提出扫描极值的方法,破解了磁源数目和初始迭代值,解决了航天器内部多磁偶极子的分辨问题.研究结果表明:初始值的选取可能导致算法失败,合理的初始值可以加速收敛;当计算磁源个数多于实际磁源数时,算法可用,但结果不可靠,反之完全失效;另外,计算误差随磁偶极子数目的增加呈增加趋势,当磁偶极子数目超过4个时,由于反演参数过多,高斯-牛顿法失效.

本文引用格式

徐超群,易忠,陈金刚,王斌 . 航天器内部多磁源分辨技术[J]. 上海交通大学学报, 2018 , 52(8) : 991 -996 . DOI: 10.16183/j.cnki.jsjtu.2018.08.016

Abstract

In order to analyze the nonlinear magnetic field equations in research of multi-magnetic source resolution in spacecraft, a multi-magnetic dipole model of spacecraft is established. The scanning extremum method is used in Gauss-Newton algorithm to break through the difficulty of the number of magnetic sources and the initial iteration values, and the inversion problem is well done. The results show that Gauss-Newton algorithm sometimes fails due to incorrect selection of initial iterative values, but the good one can accelerate the convergence. When the calculated dipoles are more than the real ones, the method can be used, but the result is not reliable. On the contrary, it will fail. The influence is big and inclines to increase with the increasing dipoles. Gauss-Newton method fails due to the excessive number of inversion parameters when the dipoles are more than four.

参考文献

[1]王明, 骆遥, 罗锋, 等. 欧拉反褶积在重磁位场中应用与发展[J].物探与化探, 2012, 36(5): 834-841. WANG Ming, LUO Yao, LUO Feng, et al. The application and development of Euler deconvolution in gravity and magnetic field[J]. Geophysical and Geochemical Exploration, 2012, 36(5): 834-841. [2]COOPER G R J. The automatic determination of the location, depth, and dip of contacts from aeromagnetic data[J]. Geophysics, 2014, 79(3): 35-41. [3]LOHMANN K J, LOHMANN C M F, EHRHART L M, et al. Animal behavior: Geomagnetic map used in sea-turtle navigation[J]. Nature, 2004, 428: 909-910. [4]RICE H, KELMENSON S, MENDELSOHN L. Geophysical navigation technologies and applications[C]∥Position Location and Navigation Symposium. Monterey: IEEE, 2004: 618-624.. [5]DAVIS K, LI Y C, NABIGHIAN M. Automatic detection of UXO magnetic anomalies using extended Euler deconvolution[J]. Geophysics, 2010, 75(3): 13-20. [6]TANG F K, WANG Q, HUA N, et al. Cardiac magnetic source imaging based on current multipole model[J]. Chinese Physics B, 2011, 20(1): 010702-1-010702-9. [7]易忠, 孟立飞. “探测”双星磁性仿真分析计算[J], 装备环境工程, 2006, 3(3): 37-42. YI Zhong, MENG Lifei. Calculation and analysis of magnetic simulation for the double star[J]. Equipment Environmental Engineering, 2006, 3(3): 37-42. [8]陈俊杰, 易忠, 孟立飞, 等.基于欧拉方法的多磁偶极子分辨技术[J]. 航天器环境工程, 2013, 30(4): 401-406. CHEN Junjie, YI Zhong, MENG Lifei, et al. Multi-dipoles discrimination technique based on Euler inverse method[J]. Spacecraft Environment Engineering, 2013, 30(4): 401-406. [9]张艺腾, 李磊, 周斌, 等.磁场梯度张量法清除卫星磁干扰[J]. 北京航空航天大学学报, 2016, 42(5): 920-926. ZHANG Yiteng, LI Lei, ZHOU Bin, et al. Eliminating magnetic disturbance of satellites by method of magnetic field gradient tensor measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 920-926. [10]MEHLEM K. Optimal magnetic cleanliness modeling of spacecraft[C]∥Fasano Giorgio. Springer Optimization and Its Applications. NewYork: Springer, 2012: 295-341. [11]张朝阳, 肖昌汉, 高俊吉, 等.磁性物体磁偶极子模型适用型的实验研究[J]. 应用基础与工程科学学报, 2010, 18(5): 862-867. ZHANG Zhaoyang, XIAO Changhan, GAO Junji, et al. Experiment research of magnetic dipole model applicability of a magnetic object[J]. Journal of Basic Science and Engineering, 2010, 18(5): 862-867.
Options
文章导航

/