学报(中文)

晶体塑性模型在微压缩实验误差分析中的应用

展开
  • 1. 郑州大学 力学与工程科学学院,郑州 450001; 2. 郑州大学 微纳成型技术国家级国际联合研究中心, 郑州 450001; 3. 西安交通大学 机械结构强度与振动国家重点实验室, 西安 710049

网络出版日期: 2018-07-28

基金资助

国家自然科学基金资助项目(1160225),河南省基础与前沿技术研究计划项目(52110599),郑州大学优秀青年教师发展基金资助项目(1521327001)

Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test

Expand
  • 1. School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China; 2. National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China; 3. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2018-07-28

摘要

应用基于位错密度的各向异性晶体塑性理论模型,分析了轴向压缩下Ni单晶微圆柱体的力学响应.将其与实验结果对比,验证了该理论模型的合理性.进而,以单滑移[123]取向Ni金属柱体的微压缩实验为研究对象,分析晶体取向、摩擦力、接触失配以及几何锥度等常见实验误差因素对其力学测试结果的影响.研究结果表明:在单滑移取向下,晶体取向偏差(2°)导致微圆柱体整体变形从单滑移向多滑移变形转变;受摩擦力影响的横向约束效应可以显著提高塑性应变硬化程度;接触失配导致弹性模量测试值偏低,同时使得塑性剪切滑移主方向发生显著改变;在有锥度(2°~5°)条件下,屈服应力值较无锥度情况偏低.

本文引用格式

邵吉吉1,张旭1,2,3,苗同臣1,尚福林3 . 晶体塑性模型在微压缩实验误差分析中的应用[J]. 上海交通大学学报, 2018 , 52(7) : 860 -866 . DOI: 10.16183/j.cnki.jsjtu.2018.07.015

Abstract

Anisotropic crystal plasticity model based on dislocation density is employed to investigate the mechanical response of nickel single crystalline micropillar, and is further verified by comparing its predictions with existing experimental data. Following that, we study nickel single crystalline micropillar with orientation having [123], and investigate the influence of common experimental errors of crystal orientations, friction, misalignment and taper angle, on the mechanical testing results. It is found that for the single-slip orientated micropillar, slight variation of crystal orientation leads to a transition from single-slip behavior to multi-slip deformation. Friction-affected lateral constraint shows a dramatic effect on the microcrystal strain hardening behavior. Small misalignments give rise to a decrease of elastic modulus, and change the prime slip direction in significant ways. The taper micropillar shows much smaller yield stress than no taper pillars do.

参考文献

[1]庄茁, 崔一南, 高原, 等. 亚微米尺度晶体反常规塑性行为的离散位错研究进展[J]. 力学进展, 2011, 41(6): 647-667. ZHUANG Zhuo, CUI Yinan, GAO Yuan, et al. Advances in discrete dislocation mechanism on sub-micro crystal atypical plasticity[J]. Advances In Mechanics, 2011, 41(6): 647-667. [2]UCHIC M D, DIMIDUK D M, FLORANDO J N, et al. Sample dimensions influence strength and crystal plasticity[J]. Science, 2004, 305: 986-989. [3]田琳, 付琴琴, 单智伟. 聚焦离子束在微纳尺度材料力学性能研究中的应用[J]. 中国材料进展, 2013, 32(12): 706-715. TIAN Lin, FU Qinqin, SHAN Zhiwei. Applications of focused ion beam in the study on mechanical pro-perties of micro/nanomaterials[J]. Materials China, 2013, 32(12): 706-715. [4]UCHIC M D, DIMIDUK D M. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing[J]. Materials Science and Engineering: A, 2005, 400: 268-278. [5]SPARKS G, PHANI P S, HANGEN U, et al. Spatiotemporal slip dynamics during deformation of gold micro-crystals[J]. Acta Materialia, 2017, 122: 109-119. [6]KONDORI B, NEEDLEMAN A, BENZERGA A A. Discrete dislocation simulations of compression of tapered micropillars[J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 223-234. [7]LEE E H. Elastic-plastic deformation at finite strains[J]. Journal of Applied Mechanics, 1969, 36(1): 1-6. [8]PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in cry-stalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. [9]HUTCHINON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1976, 348: 101-127. [10]HARDER J. A crystallographic model for the study of local deformation processes in polycrystals[J]. International Journal of Plasticity, 1999, 15(6): 605-624. [11]叶诚辉, 魏啸, 陆皓. 基于位错密度的晶体塑性有限元方法的数值模拟及参数标定[J]. 材料导报, 2016, 30(4): 132-137. YE Chenghui, WEI Xiao, LU Hao. Numerical simulation of crystal plasticity finite element method based on dislocation density and parameter calibration[J]. Materials Review, 2016, 30(4): 132-137. [12]DEVINCRE B, HOC T, KUBIN L. Dislocation mean free paths and strain hardening of crystals[J]. Science, 2008, 320: 1745-1748. [13]DIMIDUK D M, UCHIC M D, PARTHASARATHY T A. Size-affected single-slip behavior of pure nickel microcrystals[J]. Acta Materialia, 2005, 53(15): 4065-4077. [14]ZHANG X, SHANG F. A continuum model for intermittent deformation of single crystal micropillars[J]. International Journal of Solids and Structures, 2014, 51(10): 1859-1871. [15]DIMIDUK D M, WOODWARD C, LESAR R, et al. Scale-free intermittent flow in crystal plasticity[J]. Science, 2006, 312: 1188-1190. [16]JUNG J H, NA Y S, CHO K M, et al. Microcompression behaviors of single crystals simulated by crystal plasticity finite element method[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2015, 46A(11): 4834-4840. [17]SHADE P A, WHEELER R, CHOI Y S, et al. A combined experimental and simulation study to exa-mine lateral constraint effects on microcompression of single-slip oriented single crystals[J]. Acta Materialia, 2009, 57(15): 4580-4587. [18]KORTE S, RITTER M, JIAO C, et al. Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars[J]. Acta Materialia, 2011, 59(19): 7241-7254. [19]SOLER R, MOLINA-ALDAREGUIA J M, SEGURADO J, et al. Micropillar compression of LiF [111] single crystals: Effect of size, ion irradiation and misorientation[J]. International Journal of Plasticity, 2012, 36: 50-63. [20]ZHANG H, SCHUSTER B E, WEI Q, et al. The design of accurate micro-compression experiments[J]. Scripta Materialia, 2006, 54(2): 181-186. [21]UCHIC M D, SHADE P A, DIMIDUK D M. Plasticity of micrometer-scale single crystals in compression[J]. Annual Review of Materials Research, 2009, 39: 361-386. [22]SHAN Z W, MISHRA R K, ASIF S A S, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals[J]. Nature Materials, 2007, 7(2): 115-119. [23]OUYANG C, LI Z, HUANG M, et al. Combined influences of micro-pillar geometry and substrate constraint on microplastic behavior of compressed single-crystal micro-pillar: Two-dimensional discrete dislocation dynamics modeling[J]. Materials Science and Engineering: A, 2009, 526(1/2): 235-243. [24]GAO Y, LIU Z L, YOU X C, et al. A hybrid multiscale computational framework of crystal plasticity at submicron scales[J]. Computational Materials Science, 2010, 49(3): 672-681. [25]LEE J A, SEOK M Y, ZHAO Y K, et al. Statistical analysis of the size-and rate-dependence of yield and plastic flow in nanocrystalline copper pillars[J]. Acta Materialia, 2017, 127: 332-340.
Options
文章导航

/