学报(中文)

内嵌伪弹性形状记忆合金纤维的 复合材料空心梁动态有限元分析

展开
  • 青岛科技大学 机电工程学院, 山东 青岛 266061

网络出版日期: 2018-07-28

基金资助

山东省自然科学基金 (ZR2014AL011) ,山东省高等学校科技计划 (J13LB08),青岛市科技发展计划 (13-1-4-150-jch)

Dynamic Finite Element Analysis on a Composite Hollow Beam Embedded with Pseudoelastic Shape Memory Alloy Fibers

Expand
  • College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, Shandong, China

Online published: 2018-07-28

摘要

以内嵌伪弹性形状记忆合金(SMA)纤维的复合材料空心层合梁为研究对象,基于经典层合梁理论和有限元法,在考虑SMA的相变特性、材料非线性与基体变形相互耦合的基础上,按照虚功原理建立了SMA混杂复合材料空心层合梁的运动方程,并用Newmark积分法和牛顿迭代法对运动方程进行了数值求解,研究了SMA混杂复合材料空心层合梁的振动特性,分析了SMA对复合材料层合梁的振动抑制效果,讨论了温度、结构阻尼对空心层合梁动态响应的影响规律.结果表明:同一时刻下内嵌SMA纤维的空心层合梁自由端挠度较未嵌SMA纤维时的挠度明显降低;伪弹性SMA纤维在较高的温度下能更好地实现对层合梁的振动抑制;伪弹性SMA纤维对层合梁的振动抑制效果明显优于结构阻尼对层合梁的振动抑制效果.

本文引用格式

孙双双,武丹,刘冬迪 . 内嵌伪弹性形状记忆合金纤维的 复合材料空心梁动态有限元分析[J]. 上海交通大学学报, 2018 , 52(7) : 845 -852 . DOI: 10.16183/j.cnki.jsjtu.2018.07.013

Abstract

The composite hollow laminated beam embedded with pseudoelastic shape memory alloy (SMA) fibers was taken as the research object, and its motion equation was established by the virtual work principle based on classical laminated beam theory and the finite element method. The coupling of the phase transformation and material nonlinearity of SMA and the deformation of the matrix were considered. The Newmark integration method and the Newton iteration method were used to solve the motion equation. The vibration characteristics of the SMA hybrid composite hollow laminated beam were studied and the vibration suppression effect of SMA on the composite laminated beam was analyzed. The influence of temperature and structural damping on the dynamic response of the laminated beam was discussed. It was found that the free-end deflection of the hollow laminated beam embedded with SMA fibers is obviously decreased when compared with the hollow laminated beam without SMA fibers at the same time. Pseudoelastic SMA fibers show better vibration suppression effect at higher temperatures, and the vibration suppression effect of pseudoelastic SMA fibers on the laminated beam is much better than that of structural damping.

参考文献

[1]GHOSHAL A. Structural health monitoring techniques for wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(3): 309-324. [2]邢帅恒, 周里群, 李玉平. 大型风力机复合材料叶片结构动力特性分析[J]. 机械强度, 2014, 36(1): 105-109. XING Shuaiheng, ZHOU Liqun, LI Yuping. Wind turbine composite blade dynamic character research[J]. Journal of Mechanical Strength, 2014, 36(1): 105-109. [3]马静敏, 任勇生. 风力机叶片的自由振动特性分析[J]. 振动与冲击, 2015, 34(17): 105-110. MA Jingmin, REN Yongsheng. Free vibration characteristics of wind turbine blades[J]. Journal of Vibration and Shock, 2015, 34(17): 105-110. [4]MURTAGH P J, GHOSH A, BASU B, et al. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence[J]. Wind Energy, 2008, 11(4): 305-317. [5]KANG N, PARK S C, PARK J, et al. Dynamics of flexible tower-blade and rigid nacelle system: dynamic instability due to their interactions in wind turbine[J]. Journal of Vibration and Control, 2016, 22(3): 826-836. [6]韩江, 乔印虎, 张春燕, 等. 智能风力机叶片振动主动控制研究综述[J]. 应用力学学报, 2015, 32(3): 446-453. HAN Jiang, QIAO Yinhu, ZHANG Chunyan, et al. The review for elastomer smart active wind turbine blade vibration control[J]. Chinese Journal of Applied Mechanics, 2015, 32(3): 446-453. [7]詹鹏. 风机智能叶片的控制问题[D] .北京: 华北电力大学控制与计算机工程学院, 2015. ZHAN Peng. Research on control of wind turbine smart-blade[D]. Beijing: School of Control and Computer Engineering, North China Electric Power University, 2015. [8]刘姝, 李中涛, 秦廷, 等. 压电陶瓷智能材料的风机叶片振动主动控制研究[J]. 大电机技术, 2015, 4: 59-64. LIU Shu, LI Zhongtao, QIN Ting, et al. Study on active vibration control of intelligent materials in wind turbine blades[J]. Large Electric Machine and Hydraulic Turbine, 2015, 4: 59-64. [9]乔印虎, 韩江, 张春燕, 等. 风力机叶片压电振动的主动控制研究[J]. 应用力学学报, 2013, 30(4): 587-592. QIAO Yinhu, HAN Jiang, ZHANG Chunyan, et al. Active vibration control of wind turbine blades by piezoelectric materials[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 587-592. [10]杜向红. 具有形状记忆合金(SMA)纤维驱动的复合材料箱型薄壁梁的非线性变形[D]. 山东: 山东科技大学机械电子工程学院, 2011. DU Xianghong. Nonlinear deformation of thin-walled composite box beams with SMA fibers[D]. Shandong: College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, 2011. [11]任勇生, 杜向红, 姚文丽, 等. 旋转SMA纤维混杂复合材料薄壁梁的自由振动[J].固体力学学报, 2011, 32(3): 258-276. REN Yongsheng, DU Xianghong, YAO Wenli, et al. Free vibration analysis of rotating composite thin-walled closed section beams with SMA fibers[J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 258-276. [12]CHANDRA R. Active shape control of composite blades using shape memory actuation[J]. Smart Materials and Structures, 2001, 10(5): 1018-1024. [13]张景业. 伪弹性形状记忆合金混杂复合材料振动特性研究[D]. 哈尔滨: 哈尔滨工业大学机电工程学院, 2016. ZHANG Jingye. Study on vibration of superelastic shape memory alloy hybrid composite structure[D]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, 2016. [14]KHALILI S M R, DEHKORDI M B, CARRERA E. A nonlinear finite element model using a unified formulation for dynamic analysis of multilayer composite plate embedded with SMA wires[J]. Composite Structures, 2013, 106(12): 635-645. [15]王社良, 袁磊, 杨涛, 等. 基于SMA 新型阻尼器的框架结构地震反应控制分析[J]. 世界地震工程, 2017, 33(1): 48-53. WANG Sheliang, YUAN Lei, YANG Tao, et al. Analysis of seismic response control for frame structure based novel shape memory alloy damper[J]. World Earthquake Engineering, 2017, 33(1): 48-53. [16]孙双双, RAJAPAKSE R K N D, 姜先策, 等. 含SMA支撑的无阻尼框架结构的动力特性[J]. 上海交通大学学报, 2006, 40(8): 1376-1380. SUN Shuangshuang, RAJAPAKSE R K N D, JIANG Xiance, et al. Dynamic characteristics of shape memory alloys braced frame structures[J]. Journal of Shanghai Jiao Tong University, 2006, 40(8): 1376-1380. [17]BRINSON L C. One dimensional constitutive behavior of shape memory alloy: Thermomechanical derivation with non-constant material functions and redefined martensite and internal variable[J]. Journal of Intelligent Material Systems and Structures, 1993, 4(2): 229-242. [18]KHALILI S M R, DEHKORDI M B, SHARIYAT M. Modeling and transient dynamic analysis of pseudoelastic SMA hybrid composite beam[J]. Applied Mathematics and Computation, 2013, 219(18): 9762-9782.
Options
文章导航

/