学报(中文)

手部外骨骼运动相容性设计综述

展开
  • 1. 北京工业大学 机械工程与应用电子技术学院, 北京 100124; 2. 国家康复辅具研究中心, 北京 100176

基金资助

国家自然科学基金(51675008, 51705007), 北京市自然科学基金(3171001), 中国博士后科学基金(2016M600021)和北京市科技计划(Z161100001516004)

Review of the Kinematic Compatibility Design of Hand Exoskeletons

Expand
  • 1. College of Mechanical & Electrical Engineering, Beijing University of Technology, Beijing 100124, China; 2. National Research Center for Rehabilitation Technical Aids, Beijing 100176, China

摘要

以人机运动相容性为关注点,对手部外骨骼设计的研究现状进行分析与综述.首先,结合人手解剖学结构与关节运动学属性的分析,简要介绍手部的主要运动学参考模型.其次,根据实现人机运动相容性的设计方法,将手部外骨骼归纳为人机关节轴线对齐、关节轴线自适应和柔顺性结构手套等3种主要类型,并扼要分析典型手部外骨骼的设计特点.最后,结合人机穿戴偏差、个体体征差异和人机关节运动属性差异等对人机运动相容性的影响,对手部外骨骼设计需要考虑的问题和后续研究进行了分析与论述.

本文引用格式

李剑锋1,张兆晶1,张雷雨1,陶春静2,季润2,范金红1 . 手部外骨骼运动相容性设计综述[J]. 上海交通大学学报, 2018 , 52(6) : 729 -742 . DOI: 10.16183/j.cnki.jsjtu.2018.06.015

Abstract

The design arts and status of hand exoskeletons are analyzed and reviewed from the perspective of human-robot kinematic compatibility. Firstly, the main existing hand kinematic models are introduced on the basis of the analyses of the hand anatomical structure and hand joint kinematics. Secondly, according to the design methods to realize the human-robot kinematic compatibility, the hand exoskeletons are divided into three classifies including the joint axis-alignment hand exoskeletons, the joint axis self-adaptive hand exoskeletons, and the compliance glove hand exoskeletons. Moreover, the design characteristics of the typical hand exoskeletons are also briefly analyzed. Finally, the influences of the kinematic difference between human and robot joints, the individual difference and wearing offset on the human-robot kinematic compatibility are analyzed, on which the main issues in the design of hand exoskeletons and the future research are discussed and prospected.

参考文献

[1]DONNAN G A, FISHER M, MACLEOD M, et al. Stroke[J]. Lancet, 2008, 371(9624): 1612-1623. [2]乐趣, 屈云. 脑卒中后偏瘫侧手部运动功能康复技术进展[J]. 中国康复医学杂志, 2012, 27(11): 1084-1086. LE Qu, QU Yun. Technical progress of functional rehabilitation of stroke patients with hemiplegia after stroke[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(11): 1084-1086. [3]SHIELDS B L, MAIN J, PETERSON S W, et al. An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities[J]. IEEE Transactions on Systems Man & Cybernetics Part A Systems & Humans A Publication of the IEEE Systems Man & Cybernetics Society, 1997, 27(5): 668-673. [4]TONG K Y, HO S K, PANG P M K, et al. An intention driven hand functions task training robotic system[C]∥International Conference of the IEEE Engineering in Medicine & Biology Society Conference. Buenos Aires: IEEE, 2010: 3406-3409. [5]NAKAGAWARA S, KAJIMOTO H, KAWAKAMI N, et al. An encounter-type multi-fingered master hand using circuitous joints[C]∥Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. Barcelona: IEEE, 2005: 2667-2672. [6]CEMPINI M, DE ROSSI S M M, LENZI T, et al. Kinematics and design of a portable and wearable exoskeleton for hand rehabilitation[C]∥Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on. Washington: IEEE, 2013: 6650414. [7]CEMPINI M, CORTESE M, VITIELLO N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes[J]. Mechatronics, IEEE/ASME Transactions on, 2015, 20(2): 705-716. [8]WANG Shuang, LI Jiting, ZHANG Yuru, et al. Active and passive control of an exoskeleton with cable transmission for hand rehabilitation[C]∥International Conference on Biomedical Engineering and Informatics. Tianjin: IEEE, 2009: 1-5. [9]WEGE A, ZIMMERMANN A. Electromyography sensor based control for a hand exoskeleton[C]∥IEEE International Conference on Robotics and Biomimetics. Australia: IEEE, 2008: 1470-1475. [10]ITO S, KAWASAKI H, ISHIGURE Y, et al. A design of fine motion assist equipment for disabled hand in robotic rehabilitation system[J]. Journal of the Franklin Institute, 2011, 348(1): 79-89. [11]TSOUPIKOVA D, STOYKOV N S, CORRIGAN M, et al. Virtual immersion for post-stroke hand rehabilitation therapy[J]. Annals of Biomedical Engineering, 2015, 43(2): 467-477. [12]SCHIELE A, VAN DER HELM F C T. Kinematic design to improve ergonomics in human machine interaction[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2006, 14(4): 456-469. [13]LI Jianfeng, ZHANG Ziqiang, TAO Chunjing, et al. Structure design of lower limb exoskeletons for gait training[J]. Chinese Journal of Mechanical Engineering, 2015, 28(5): 878-887. [14]JARRASS N, MOREL G. Connecting a human limb to an exoskeleton[J]. Robotics, IEEE Transactions on, 2012, 28(3): 697-709. [15]MA Z, BEN-TZVI P. RML Glove—An exoskeleton glove mechanism with haptics feedback[J]. Mechatronics, IEEE/ASME Transactions on, 2015, 20(2): 641-652. [16]ZHOU M, PINHAS B T. Sensing and force-feedback exoskeleton (SAFE) robotic glove[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2015, 23(6): 992-1002. [17]IQBAL J, TSAGARAKIS N G, CALDWELL D G. A multi-DOF robotic exoskeleton interface for hand motion assistance[C]∥Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. Singapore: IEEE, 2011: 1575-1578. [18]GODFREY S B, HOLLEY R J, LUM P S. Evaluation of HEXORR tone assistance mode against spring assistance[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2015, 23(4): 610-617. [19]BROKAW E B, HOLLEY R J, LUM P S. Hand spring operated movement enhancer (HandSOME) device for hand rehabilitation after stroke[C]∥Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. Buenos Aires: IEEE, 2010: 5867-5870. [20]HEUSER A, KOURTEV H, WINTER S, et al. Telerehabilitation using the rutgers master II glove following carpal tunnel release surgery: proof-of-concept[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2007, 15(1): 43-49. [21]JONES C L, WANG F, MORRISON R, et al. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke[J]. Mechatronics, IEEE/ASME Transactions on, 2014, 19(1): 131-140. [22]柏树令. 系统解剖学[M]. 7版. 北京: 人民卫生出版社, 2009. BO Shuling. Systematic anatomy [M]. 7th ed. Beijing: People’s Medical Publishing House, 2009. [23]WU G, VAN DER HELM F C T, VEEGER H E J D J, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II. Shoulder, elbow, wrist and hand[J]. Journal of Biomechanics, 2005, 38(5): 981-992. [24]LI K, CHEN I M, YEO S H, et al. Development of finger-motion capturing device based on optical linear encoder[J]. Journal of Rehabilitation Research & Development, 2011, 48(1): 69-82. [25]SANTOS V J, VALERO-CUEVAS F J. Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb[J]. Biomedical Engineering, IEEE Transactions on, 2006, 53(2): 155-163. [26]KAWASAKI H, ITO S, ISHIGURE Y, et al. Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control[C] ∥Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on. Australia: IEEE, 2007: 234-240. [27]FONTANA M, FABIO S, MARCHESCHI S, et al. Haptic hand exoskeleton for precision grasp simulation[J]. Journal of Mechanisms & Robotics, 2013, 5(4): 327-335. [28]FANG H, XIE Z, LIU H. An exoskeleton master hand for controlling DLR/HIT hand[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE Press, 2009: 3703-3708. [29]FANG H, XIE Z, LIU H, et al. An exoskeleton force feedback master finger distinguishing contact and non-contact mode[C]∥Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on. Singapore: IEEE, 2009: 1059-1064. [30]BATTEZZATO A. Towards an underactuated finger exoskeleton: An optimization process of a two-phalange device based on kinetostatic analysis[J]. Mechanism and Machine Theory, 2014, 78(8): 116-130. [31]LELIEVELD M J, MAENO T, TOMIYAMA T. Design and development of two concepts for a 4 DOF portable haptic interface with active and passive multi-point force feedback for the index finger[C]∥ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Philadelphia: American Society of Mechanical Engineers, 2006: 547-556. [32]FU Y, WANG P, WANG S, et al. Design and development of a portable exoskeleton based CPM machine for rehabilitation of hand injuries[C]∥Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on. Sanya: IEEE, 2007: 1476-1481. [33]BURTON T M W, VAIDYANATHAN R, BURGESS S C, et al. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton[C]∥IEEE International Conference on Rehabilitation Robotics. IEEE International Conference Rehabil Robot. Zurich: IEEE, 2011: 1-7. [34]郭盛, 方跃法, 岳聪. 基于螺旋理论的单闭环多自由度过约束机构综合[J]. 机械工程学报, 2009, 11: 38-45. GUO Sheng, FANG Yuefa, YUE Cong. Structure synthesis of single closed-loop multi-degree of freedom of over-constrained mechanism based on screw theory[J]. Journal of Mechanical Engineering, 2009, 11: 38-45. [35]WRIGHT A K, STANISIC M M. Kinematic mapping between the EXOS handmaster exoskeleton and the Utah/MIT dextrous hand[C]∥IEEE International Conference on Systems Engineering. Skokie: IEEE, 1990: 101-104. [36]CHOI B H, CHOI H R. A semi-direct drive hand exoskeleton using ultrasonic motor[C]∥IEEE International Workshop on Robot and Human Interaction. Roman: IEEE, 1999: 285-290. [37]CHOI B H, CHOI H R. SKK hand master-hand exoskeleton driven by ultrasonic motors[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu: IEEE, 2000: 1131-1136. [38]WEGE A, KONDAK K, HOMMEL G. Mechanical design and motion control of a hand exoskeleton for rehabilitation[C]∥Mechatronics and Automation, 2005 IEEE International Conference. Niagara Fails: IEEE, 2005: 155-159. [39]SUN Z, BAO G, YANG Q, et al. Design of a novel force feedback data-glove based on pneumatic artificial muscles[C]∥IEEE International Conference on Mechatronics and Automation. Orlando: IEEE, 2006: 968-972. [40]LI J, ZHENG R, ZHANG Y, et al. iHandRehab: An interactive hand exoskeleton for active and passive rehabilitation[C]∥IEEE International Conference on Rehabilitation Robotics. Zurich: IEEE, 2011: 1-6. [41]ZHENG R, LI J. Kinematics and workspace analysis of an exoskeleton for thumb and index finger rehabilitation[C]∥IEEE International Conference on Robotics and Biomimetics. Tianjin: IEEE, 2010: 80-84. [42]TANG T, ZHANG D, XIE T, et al. An exoskeleton system for hand rehabilitation driven by shape memory alloy[C]∥IEEE International Conference on Robotics and Biomimetics. Shenzhen: IEEE, 2013: 756-761. [43]MADDEN K E, DESHPANDE A D. On integration of additive manufacturing during the design and development of a rehabilitation robot: a case study[J]. Journal of Mechanical Design, 2015, 137(11): 111417. [44]WANG Ju, LI Jiting, ZHANG Yuru, et al. Design of an Exoskeleton for Index Finger Rehabilitation[C]∥31st Annual International Conference of the IEEE EMBS. Minnesota: IEEE, 2009: 5957-5960. [45]FU Y, ZHANG Q, ZHANG F, et al. Design and development of a hand rehabilitation robot for patient-cooperative therapy following stroke[C]∥Mechatronics and Automation (ICMA), 2011 International Conference on. Chengdu: IEEE, 2011: 112-117. [46]POLOTTO A, MODULO F, FLUMIAN F, et al. Index finger rehabilitation/assistive device[C]∥Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. Australia: IEEE, 2012: 1518-1523. [47]CHIRI A, VITIELLO N, GIOVACCHINI F, et al. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation[J]. Mechatronics, IEEE/ASME Transactions on, 2012, 17(5): 884-894. [48]CHIRI A, GIOVACCHINI F, VITIELLO N, et al. HANDEXOS: Towards an exoskeleton device for the rehabilitation of the hand[C]∥Intelligent Robots and Systems. St. Louis: IEEE, 2009: 1106-1111. [49]CONNELLY L, JIA Y, TORO M L, et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, IEEE, 2010, 18(5): 551-559. [50]YAP H K, LIM J H, NASRALLAH F, et al. A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness[C]∥2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4967-4972. [51]POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training[C]∥IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 2913-2919. [52]IN H K, CHO K J, KIM K R, et al. Jointless structure and under-actuation mechanism for compact hand exoskeleton[C]∥Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on. Zurich: IEEE, 2011: 1-6. [53]LEE S, LANDERS K, PARK H S. Development of a biomimetic hand exotendon device (BiomHED) for restoration of functional hand movement post-stroke[J]. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2014, 22(4): 886-898. [54]ARATA J, OHMOTO K, GASSERT R, et al. A new hand exoskeleton device for rehabilitation using a three-layered sliding spring mechanism[C]∥Robotics and Automation (ICRA), 2013 IEEE International Conference on. Karlsruhe: IEEE, 2013: 3902-3907. [55]NYCZ C J, BUTZER T, LAMBERCY O, et al. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton[J]. IEEE Robotics & Automation Letters, 2016, 1(2): 976-983. [56]杨建宇, 谢华龙, 史家顺. 线驱无关节手指外骨骼的运动耦合方法[J]. 机器人, 2016(1): 27-32. YANG Jianyu, XIE Hualong, SHI Jiashun. A motion coupling method for tendon-driven jointless finger exoskeleton[J]. Robot, 2016(1): 27-32. [57]杨正东, 王人成. 截瘫助行机器人人机运动相容性仿真分析[C]∥北京国际康复论坛. 北京: 中国康复研究中心, 2014. YANG Zhengdong, WANG Rencheng. Simulation analysis of human-machine kinematic coordination of walk assisting robot[C]∥Beijing International Forum on Rehabilitation. Beijing: China Rehabilitation Research Center, 2014. [58]严华, 杨灿军, 陈杰. 上肢运动康复外骨骼肩关节优化设计与系统应用[J]. 浙江大学学报(工学版), 2014(6): 1086-1094. YAN Hua, YANG Canjun, CHEN Jie. Optimal design on shoulder joint of upper limb exoskeleton robot for motor rehabilitation and system application[J]. Journal of Zhejiang University (Engineering Science), 2014(6): 1086-1094.
Options
文章导航

/