针对现有分形理论描述粗糙表面接触变形过程存在的问题,以与波长对应的系数作为尺度划分依据,提出了一种考虑分形细节和微凸体接触变形过程的分段计算模型.通过数学推导和分析论述粗糙表面的接触变形过程,得出了与现有分形理论不同的结论,并论述了其不同的原因.基于此考虑了各尺度之间等效模型的连续性,导出了真实接触面积与载荷之间的隐函数关系,并进行了数值模拟分析.结果表明:粗糙表面的接触变形过程是从塑性变形到弹性变形的转变,在转变过渡区域会出现弹性变形和塑性变形交替的过程;某一确定尺度下微凸体变形前的顶端曲率半径是一个不随变形量变化的定值;当分形维度接近1时,粗糙表面以塑性变形为主,此时表面接触性质仅受到材料的影响;分形维度存在一个最佳值,此时粗糙表面接触性质最好.
To address the existing problems of fractal theory, a piecewise calculation model was proposed. This new model was calculated by different functions with the corresponding parameters set by the wavelength. The fractal detail and deformation process of asperity were considered in this model. The contact deformation process of rough surface was studied and the relationship between real contact area and load was given. The analysis results showed that contact deformation process of rough surface is a transition from plastic to elastic contact model, where elastic deformation and plastic deformation model alternately take place. The top radius of curvature of the asperity is a fixed value which is independent of the deformation under a certain scale. When the fractal dimension is close to 1, the rough surface is dominated by the plastic deformation, and the surface contact property is only affected by the material. An optimal value of fractal dimension is existed when the rough surface contact property is the best.
[1]葛世荣, 朱华. 摩擦学的分形[M]. 北京: 机械工业出版社, 2005.
GE Shirong, ZHU Hua. Fractal in tribology [M]. Beijing: China Machine Press, 2005.
[2]GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces [J]. Proceedings of the Ro-yal Society A: Mathematical, Physical and Engineering Sciences, 1966, 295(1442): 300-319.
[3]SAYLES R S, THOMAS T R. Surface topography as a non-stationary random process [J]. Nature, 1978, 271: 431-434.
[4]MAJUMDAR A, BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces [J]. Journal of Tribology, 1991, 113(1): 1-11.
[5]MANDELBROT B B. Stochastic models for the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands [J]. Proceedings of the National Academy of Sciences, 1975, 72(10): 3825-3828.
[6]KOGUT L, ETSION I. Elastic-plastic contact analysis of a sphere and a rigid flat [J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[7]LIU P, ZHAO H, HUANG K, et al. Research on normal contact stiffness of rough surface considering friction based on fractal theory [J]. Applied Surface Science, 2015, 349: 43-48.
[8]赵波, 戴旭东, 张执南, 等. 单峰接触研究及其在分形表面接触中的应用[J]. 摩擦学学报, 2014, 34(2): 217-224.
ZHAO Bo, DAI Xudong, ZHANG Zhinan, et al. Single asperity contact and its use for fractal surface contact [J]. Tribology, 2014, 34(2): 217-224.
[9]丁雪兴, 严如奇, 贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析[J]. 摩擦学学报, 2014, 34(4): 341-347.
DING Xuexing, YAN Ruqi, JIA Yonglei. Construction and analysis of fractal contact mechanics model for rough surface based on base length [J]. Tribology, 2014, 34(4): 341-347.
[10]MORAG Y, ETSION I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces [J]. Wear, 2006, 262(5/6): 624-629.
[11]LIOU J L, CHI M T, LIN J F. A microcontact mo-del developed for sphere- and cylinder-based fractal bodies in contact with a rigid flat surface [J]. Wear, 2010, 268(3/4): 431-442.
[12]甘立, 原园, 刘凯, 等. 分形粗糙表面弹塑性接触力学模型[J]. 应用力学学报, 2016, 33(5): 738-743.
GAN Li, YUAN Yuan, LIU Kai, et al. Fractal rough surface elastic-plastic contact mechanics mode [J]. Chinese Journal of Applied Mechanics, 2016, 33(5): 738-743.
[13]YAN W, KOMVOPOULOS K. Contact analysis of elastic-plastic fractal surfaces [J]. Journal of Applied Physics, 1998, 84(7): 3617-3624.
[14]PULLEN J, WILLIAMSON J B P. On the plastic contact of rough surfaces [J]. Proceedings of the Ro-yal Society A: Mathematical, Physical and Engineering Sciences, 1972, 327(1569): 159-173.
[15]WANG S, KOMVOPOULOS K. A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I—Elastic contact and heat transfer analysis [J]. Journal of Tribology, 1994, 116(4): 812-822.
[16]KOMVOPOULOS K, YE N. Three-Dimensional contact analysis of elastic-plastic layered media with fractal surface topographies [J]. Journal of Tribology, 2001, 123(3): 632-640.
[17]张学良, 陈永会, 温淑花, 等. 考虑弹塑性变形机制的结合面法向接触刚度建模[J]. 振动工程学报, 2015, 28(1): 91-99.
ZHANG Xueliang, CHEN Yonghui, WEN Shuhua, et al. Considering elastic-plastic deformation mechanism of the joint surface normal contact stiffness model [J]. Journal of Vibration Engineering, 2015, 28(1): 91-99.