学报(中文)

基于移动脉动源格林函数的小水线面 双体船耐波性频域计算

展开
  • 海军工程大学 舰船工程系, 武汉 430033

基金资助

国家自然科学基金(50879090,51509256),水动力重点基金(9140A1403071251311044),航空科学基金(20152316005),海军工程大学博士生创新基金(4142C15F)

Frequency Domain Computation Study on the Seakeeping Performance of Small-Waterplane-Area Twin Hull Based on the Translating-Pulsating Source Green Function

Expand
  • Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China

摘要

基于三维移动脉动(3DTP)源格林函数,针对安装稳定鳍的小水线面双体船(SWATH),计入两片体之间的水动力干扰、黏性和稳定鳍的影响,建立了SWATH耐波性频域计算方法.通过与SWATH试验模型(SWATH-M)的试验结果对比,验证了计算方法的可靠性,进而研究了航速对SWATH-M耐波性的影响,并分析了黏性和稳定鳍对SWATH-M整船所受水动力的贡献.结果表明,基于3DTP的船体运动计算结果与试验结果吻合良好.船体的运动响应算子随波长变化呈现出双极值.随着航速提高,短波共振区附近的运动响应算子极值增大,而长波共振区附近的运动响应算子极值降低.黏性和稳定鳍对阻尼系数的影响主要体现在垂荡-垂荡阻尼系数和纵摇-纵摇阻尼系数上,对波浪干扰力的影响主要体现在垂荡力虚部和纵摇力矩实部.

本文引用格式

孙小帅,姚朝帮,熊鹰,叶青 . 基于移动脉动源格林函数的小水线面 双体船耐波性频域计算[J]. 上海交通大学学报, 2018 , 52(6) : 698 -707 . DOI: 10.16183/j.cnki.jsjtu.2018.06.011

Abstract

The seakeeping performance of a small-waterplane-area twin hull (SWATH) installed with stabilizing fins was investigated on the basis of the three-dimensional translating-pulsating (3DTP) source Green function. The effects of the hydrodynamic interaction between twin hulls, the viscous damping and the lift generated by the stabilizing fins were included. The numerical method was validated by comparison with the test results of a SWATH vehicle called SWATH-M. Then the influences of the forward speed on the seakeeping characteristic of SWATH-M were studied, and the effects of the viscosity and stabilizing fins on the hydrodynamic forces of the total hull were analyzed. The results obtained from the present method based on the 3DTP source Green function show good agreement with those of the test. The transfer functions of both heave and pitch modes depict two peak values with the wavelength increase. With the increase of the forward speed, the peak value in the relatively short wave zone increases while the peak value in the long wave zone decreases. The effects of the viscosity and stabilizing fins have obvious contribution to the heave-heave damping, the pitch-pitch damping, the imaginary part of heave force and the real part of pitch moment.

参考文献

[1]KOS S, BRI D, FRANI V. Comparative analysis of conventional and swath passenger catamaran[C]∥Proceedings of the 12th International Conference on Transport Science, Portoro: Fakulteta za Pomorstvo in Promet, 2009. [2]BRIZZOLARA S, VERNENGO G. Automatic optimization computational method for unconventional SWATH ships resistance[J]. International Journal of Mathematical Models and Methods in Applied Sciences, 2011, 5(5): 882-889. [3]BOUSCASSE B, BROGLIA R, STERN F. Experimental investigation of a fast catamaran in head waves[J]. Ocean Engineering, 2013, 72(7): 318-330. [4]LEE C M. Theoretical prediction of motion of small waterplane area, twin-hull (SWATH) ships in waves[R]. SPD-76-0046, Bethesda: DTNSRDC Report, 1976. [5]HONG Y S. Improvements in the prediction of heave and pitch motions for SWATH ships[R]. SDR0928-02, Bethesda: DTNSRDC Departmental Report, 1980. [6]MCCREIGHT K K, STAHL R. Vertical plane motions of SWATH ships in regular waves[R]. SPD-1076-01, Bethesda: DTNSRDC Report, 1983. [7]MCCREIGHT K K. Predicting the motions of SWATH ships in waves—A validated mathematical model[R]. CRDKNSWC/HD-1350-03, Washing-ton: Naval Surface Warfare Center Carderock Division Hydromechanics Directorate Research and Development Report, 1995. [8]李向群. SWATH船型的耐波性研究[J]. 上海船舶运输科学研究所学报, 1988, 2: 41-46. LI Xiangqun. A study on the seakeeping ability of SWATH[J]. Journal of Shanghai Ship and Shipping Research Institute, 1988, 2: 41-46. [9]董祖舜, 董文才. 小水线面双体船纵向运动稳定性的简化判据及分析[J]. 中国造船, 1994 (4): 36-48. DONG Zushun, DONG Wencai. A simplified criterion and an analysis of some influence factors on longitudinal motion stability of small waterplane area twin-hull ships[J]. Shipbuilding of China, 1994(4): 36-48. [10]刘志华, 董文才, 熊鹰. 小型高速SWATH船下体型线研究[J]. 船舶工程, 2004(6): 4-8. LIU Zhihua, DONG Wencai, XIONG Ying. Study on lines of lower hull of small-sized high-speed SWATH ship[J]. Ship Engineering, 2004(6): 4-8. [11]毛筱菲. 小水线面双体船在波浪中的运动响应预报[J]. 船海工程, 2006 (4): 13-15. MAO Xiaofei. Numerical study of the motion response prediction of SWATH ship in waves[J]. Ship and Ocean Engineering, 2006(4):13-15. [12]CHAN H S. Prediction of motion and wave loads of twin-hull ships[J]. Marine Structures, 1996(6): 75-102. [13]吴介, 谷家扬, 管义锋, 等. 基于 Rankine 源法的小水线面双体科考船耐波性预报[J]. 江苏科技大学学报 (自然科学版), 2015, 29(2): 103-107. WU Jie, GU Jiayang, GUAN Yifeng, et al. Prediction of SWATH research ship seakeeping performance based on the Rankine source method[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015, 29(2): 103-107. [14]QIAN P, YI H, LI Y. Numerical and experimental studies on hydrodynamic performance of a small-waterplane-area-twin-hull (SWATH) vehicle with inclined struts[J]. Ocean Engineering, 2015, 96: 181-191. [15]邓磊, 董文才, 姚朝帮. 顶浪规则波中小水线面双体船纵向运动特性数值分析[J]. 舰船科学技术, 2016, 38(8): 5-10. DENG Lei, DONG Wencai, YAO Chaobang. Numerical study on characteristics of SWATH ship longitudinal motions in regular head waves[J]. Ship Science and Technology, 2016, 38(8): 5-10. [16]BONFIGLIO L, BRIZZOLARA S, CHRYSSOSTOMIDIS C. Viscous free surface numerical simulations of oscillating SWATH ship sections[J]. Recent Researches in Mechanical Engineering, 2013(1): 33-38. [17]BONFIGLIO L, BRIZZOLARA S. Influence of viscosity on radiation forces: A comparison between monohull, catamaran and SWATH[C]∥Proceedings of the 23th International Offshore and Polar Engineering Conference, Alaska: International Society of Offshore and Polar Engineers, 2013. [18]BRIZZOLARA S, BONFIGLIO L, MEDEIROS J S. Influence of viscous effects on numerical prediction of motions of SWATH vessels in waves[J]. Ocean Systems Engineering, 2013, 3(3): 219-236. [19]XU Y, DONG W C. Study on characteristics of 3-D translating-pulsating source Green function of deep-water Havelock form and its fast integration method[J]. China Ocean Engineering, 2011, 25(3): 365-380. [20]YAO C B, DONG W C. Study on fast integration method for Bessho form translating-pulsating source Green’s function distributing on a panel[J]. Ocean Engineering, 2014, 89: 10-20. [21]YAO C B, DONG W C. A fast integration method for translating-pulsating source Green’s function in Bessho form[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(2): 108-119.
Options
文章导航

/