学报(中文)

基于Kriging代理模型的船舶水动力性能多目标快速协同优化

展开
  • 上海交通大学 海洋工程国家重点实验室; 高新船舶与深海开发装备协同创新中心, 上海 200240

基金资助

教育部重大专项课题(GKZY010004)

Fast Collaborative Multi-Objective Optimization for Hydrodynamic Based on Kriging Surrogate Model

Expand
  • State Key Laboratory of Ocean Engineering; Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China

摘要

引入Kriging代理模型,对船舶兴波阻力、垂荡和纵摇运动幅值进行了多目标快速优化.优化过程中,以Rankine源非线性势流理论和三维频域面元法为基础,利用非支配排序遗传算法(NSGA-II)并结合船体曲面修改函数对船体型线进行多目标优化设计,将高精度Kriging代理模型引入到优化进程中以解决迭代造成的耗时难题.数值分析结果表明:该优化方法能够使船型最优,在设计吃水、服务航速下有效减少航行阻力并提高耐波性能,且Kriging代理模型方法可以大幅提高船型优化效率.最后,基于雷诺平均(RANS)方程的计算流体动力学(CFD)方法对模型尺度λ为 31.599 的最优船型的阻力结果进行了对比验证,以证明优化结果的可靠性.

本文引用格式

王刚成,马宁,顾解忡 . 基于Kriging代理模型的船舶水动力性能多目标快速协同优化[J]. 上海交通大学学报, 2018 , 52(6) : 666 -673 . DOI: 10.16183/j.cnki.jsjtu.2018.06.006

Abstract

The wave drag, heave and pitch performance of the ship at design speed are optimized by introducing Kriging surrogate model. During the optimizing process, hull lines are optimized by utilizing the non-dominated sorting genetic algorithm and surface modification functions based on Rankine source method and 3-D Green function method. In addition, the high-precision Kriging surrogate model is applied to approximate optimization objectives in order to solve the time-consuming problem in the iterative process. Numerical results show that the present optimization approach can be used to optimize ship hull forms for reducing drag and improving seakeeping performance, and Kriging surrogate model can improve optimization efficiency considerably. Finally, the drag optimization results at model scale λ=31.599 are validated via CFD method based on Reynolds-averaged Navier-Stokes (RANS) equations.

参考文献

[1]KIM H. Multi-objective optimization for ship hull form design[D]. Virginia: George Mason University, 2009. [2]HUANG F, WANG L, YANG C. A new improved artificial bee colony algorithm for ship hull form optimization[J]. Engineering Optimization, 2016, 48(4): 672-686. [3]SERANI A, FASANO G, LIUZZI G, et al. Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms[J]. Applied Ocean Research, 2016, 59: 115-128. [4]HAN S, LEE Y S, CHOI Y B. Hydrodynamic hull form optimization using parametric models[J]. Journal of Marine Science and Technology, 2012, 17(1): 1-17. [5]王殿飞, 马宁, 顾解忡. 基于遗传算法的五体船片体布局多目标优化研究[J]. 船舶工程, 2011, 33(5): 56-59. WANG Dianfei, MA Ning, GU Xiechong. Study on multi-objective optimization of pentamaran demihull layout based on genetic algorithm[J]. Ship Engineering, 2011, 33(5): 56-59. [6]黄珍平, 马宁, 顾解忡. 五体船波浪中运动与增阻的主片体协同优化研究[J]. 船舶工程, 2013, 33(3): 7-9. HUANG Zhenping, MA Ning, GU Xiechong. Stu-dies of collaborative optimization of pentamaran main hull and demihulls based on motions and added resistance in waves[J]. Ship Engineering, 2013, 33(3): 7-9. [7]罗少泽, 马宁, 平川嘉昭, 等. 大型集装箱船拖曳水池敞开式风场中风阻试验与数值计算[J]. 上海交通大学学报, 2016, 50(3): 389-394. LUO Shaoze, MA Ning, HIRAKAWA Yoshiaki, et al. Experimental and numerical study on wind drag on large containership by using open wind test in towing tank[J]. Journal of Shanghai Jiao Tong University, 2016, 50(3): 389-394. [8]DE BOER A, VAN DER SCHOOT M S, BIJL H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structures, 2007, 85(11/12/13/14): 784-795. [9]钱建魁, 毛筱菲, 王孝义, 等. 基于CFD和响应面方法的最小阻力船型自动优化[J]. 船舶力学, 2012, 16(1/2): 36-43. QIAN Jiankui, MAO Xiaofei, WANG Xiaoyi, et al. Ship hull automated optimization of minimum resistance via CFD and RSM technique[J]. Journal of Ship Mechanics, 2012, 16(1/2): 36-43. [10]DOCTORS L J. A numerical study of the resistance of transom-stern monohulls[J]. Ship Technology Research, 2007, 54(3): 134-144. [11]DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [12]MUKHOPADHYAY T, CHAKRABORTY S, DEY S, et al. A critical assessment of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 495-518. [13]刘晓路, 陈英武, 荆显荣, 等. 优化拉丁方试验设计方法及其应用[J].国防科技大学学报, 2011, 33(5): 73-77. LIU Xiaolu, CHEN Yingwu, JING Xianrong, et al. Optimized latin hypercube sampling method and its application[J]. Journal of National University of Defense Technology, 2011, 33(5): 73-77.
Options
文章导航

/