学报(中文)

滑动轴承-转子系统中金属阻尼器的减振特性

展开
  • 上海大学 机电工程与自动化学院, 上海 200072

网络出版日期: 2018-05-28

基金资助

国家自然科学基金项目(51705302)

Vibration Reduction Characteristics of Metal Damper in Journal Bearing-Rotor System

Expand
  • School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China

Online published: 2018-05-28

摘要

为了探究金属阻尼器对滑动轴承-转子系统减振性能的影响,设计并制造了普通、周向金属阻尼器支撑、径向金属阻尼器支撑的3种滑动轴承,并通过试验研究了含3种轴承的轴承-转子系统的振动特性和稳定性,分析了轴承-转子系统的半速涡动和减振特性.结果表明:与普通滑动轴承相比,金属阻尼器支撑的滑动轴承的加速度幅值显著降低;因为没有明显的半速涡动和异步振动,所以径向金属阻尼器支撑的滑动轴承比周向金属阻尼器支撑的滑动轴承的减振效果更好;由金属阻尼器消散的振动能量有助于提高轴承-转子系统的动态稳定性.

本文引用格式

李召伦,王小静,沈轶钒,陈超,董健 . 滑动轴承-转子系统中金属阻尼器的减振特性[J]. 上海交通大学学报, 2018 , 52(5) : 612 -619 . DOI: 10.16183/j.cnki.jsjtu.2018.05.017

Abstract

In order to investigate the influence of metal damper (MD) on the damping performance of journal bearing-rotor system, three kinds of journal bearings (general journal bearings, journal bearings supported on circular MD, journal bearings supported on radial MD) were designed and manufactured. Experiments were carried out to investigate vibration characteristics and stability of the bearing-rotor system with the above bearings. Half speed vortex and vibration reduction characteristics of the system were analyzed. Results show that there is a significant decrease in acceleration amplitude of the bearings embedded with MD compared to general journal bearings. The journal bearings supported on radial MD have better vibration damping effect than journal bearings supported on circular MD, for there is no obvious half speed vortex and asynchronous vibration. Vibration energy dissipated by MD contributes to improving dynamics stability of the bearing-rotor system.

参考文献

[1]RIBEIRO E A, PEREIRA J T, BAVASTRI C A. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials[J]. Journal of Sound and Vibration, 2015, 351: 43-56. [2]IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 371-452. [3]陈利, 陈娇红, 孙敏. 挤压油膜阻尼器在旋转机械中的减振研究[J]. 东方电气评论, 2012, 26(4): 19-24. CHEN Li, CHEN Jiaohong, SUN Min. Vibration and damping research of squeeze film damper in rotating machinery[J]. Dongfang Electric Review, 2012, 26(4): 19-24. [4]CHEN H, HOU L, CHEN Y. Bifurcation analysis of a rigid-rotor squeeze film damper system with unsymmetrical stiffness supports[J]. Archive of Applied Mechanics, 2017(2): 1-18. [5]马艳红, 陆宏伟, 朱海雄, 等. 弹性环金属橡胶支撑结构刚度设计与试验验证[J]. 航空学报, 2013, 34(6): 1301-1308. MA Yanhong, LU Hongwei, ZHU Haixiong, et al. Structural stiffness design and experimental evaluation of elastic ring-metal rubber damper[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1301-1308. [6]李胜波, 闫辉, 姜洪源, 等. 圆锥滑动轴承-转子系统中金属橡胶阻尼器力学性能研究[J]. 功能材料, 2011, 42(1): 167-170. LI Shengbo, YAN Hui, JIANG Hongyuan, et al. Research on mechanical properties of metal rubber damper in conical bearing-rotor system[J]. Journal of Functional Materials, 2011, 42(1): 167-170. [7]TAN Q B, HE G. 3D entangled wire reinforced metallic composites[J]. Materials Science and Engineering A, 2012, 546: 233-238. [8]FENG K, LIU Y, ZHAO X, et al. Experimental evaluation of the structure characterization of a novel hybrid bump-metal mesh foil bearing[J]. Journal of Tribology, 2016, 138(2): 83-114. [9]CHILDS D W. The space shuttle main engine high-pressure fuel turbopump rotordynamic instability problem[J]. Journal of Engineering for Gas Turbines and Power, 1978, 100 (1): 48-57. [10]OKAYASU A, OHTA T, AZUMA T, et al. Vibration problem in the LE-7 LH2 turbopump[C]∥26th Joint Propulsion Conference. Washington, USA: AIAA, 2013. [11]ERTAS B H, ALKHATEEB E, VANCE J M. Rotordynamic bearing dampers for cryogenic rocket engine turbopumps[J]. Journal of Propulsion and Power, 2012, 19(4): 674-682. [12]MA Y H, ZHU H X, ZHANG D Y, et al. Experimental investigation on dynamic mechanical behavior of the elastic ring support with metal rubber[C]∥ASME 2013 International Mechanical Engineering Congress and Exposition. California, USA: ASME, 2013: 62739-1-7. [13]HOU J F, BAI H B, LI D W. Damping capacity measurement of elastic porous wire-mesh material in wide temperature range[J]. Journal of Materials Processing Technology, 2008, 206(1/2/3): 412-418. [14]ZHANG D Y, SCARPA F, MA Y H, et al. Compression mechanics of nickel-based superalloy metal rubber[J]. Materials Science and Engineering A, 2013, 580: 305-312. [15]ZHANG D, SCARPA F, MA Y, et al. Dynamic mechanical behavior of nickel-based superalloy metal rubber[J]. Materials & Design, 2014, 56(4): 69-77. [16]FENG K, ZHAO X, ZHANG Z, et al. Numerical and compact model of metal mesh foil bearings[J]. Tribology Transactions, 2016, 59(3): 480-490 . [17]邹广平, 刘泽, 唱忠良, 等. 金属丝网橡胶压缩力学性能研究[J]. 实验力学, 2014, 29(6): 676-682. ZOU Guangping, LIU Ze, CHANG Zhongliang, et al. On the compression properties of metal wire mesh rubber[J]. Journal of Experimental Mechanics, 2014, 29(6): 676-682. [18]张新勇, 段滋华. 滑动轴承油膜振荡故障诊断及在线消除[J]. 润滑与密封, 2008, 33(4): 104-107. ZHANG Xinyong, DUAN Zihua. A study of fault diagnosis and online elimination on oil oscillation of journal bearing system[J]. Lubrication Engineering, 2008, 33(4): 104-107. [19]CHANDRA N H, SEKHAR A S. Nonlinear damping identification in rotors using wavelet transform[J]. Mechanism and Machine Theory, 2016, 100: 170-183. [20]齐宇, 梁建设, 柳迎红, 等. 改进的Morlet小波变换在储集层预测中的应用[J]. 新疆石油地质, 2016, 37(5): 598-601. QI Yu, LIANG Jianshe, LIU Yinghong, et al. Application of modified Morlet wavelet transform in re-servoir prediction[J]. Xinjiang Petroleum Geology, 2016, 37(5): 598-601. [21]HU Z B, YUN X L, JIANG G D, et al. Non-stationary signal purification and rotor axis orbit feature extraction under machine tool spindle cutting process[J]. Applied Mechanics and Materials, 2017, 868: 305-310. [22]PANG X Y, YANG Z J, YUAN J X, et al. Recognition of torque load for elastic support rotor system based on axis orbit[C]∥13th International Conference on International Conference on Ubiquitous Robots and Ambient Intelligence. Xi’an, China: IEEE, 2016: 830-835.
Options
文章导航

/