学报(中文)

超声振动条件下碳化硅抛光过程的分子动力学模拟

展开
  • 哈尔滨工业大学 机电工程学院, 哈尔滨 150001

网络出版日期: 2018-05-28

基金资助

国家自然科学基金项目(51475119)

Molecular Dynamics Simulation of Polishing Process of Silicon Carbide Under Ultrasonic Vibration Conditions

Expand
  • School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Online published: 2018-05-28

摘要

为了深入探讨在超声振动条件下立方碳化硅化学机械抛光过程中原子层面的材料去除机制,利用分子动力学方法建立碳化硅原子模型,以分析超声振动对刻划加工过程中碳化硅的晶体结构、温度、法向力和切向力的影响规律,并分析了超声振动频率对化学机械抛光质量及材料去除率的影响.结果表明:在刻划加工过程中碳化硅的局部出现了非晶态变化;超声振动的引入将大幅降低磨粒所受平均切向力和平均法向力,从而有利于刻划加工的进行及其表面质量的提高;在给定的模拟参数条件下,80GHz的超声振动频率最有利于提高材料去除率和加工表面质量,即当振动频率超过一定值后,超声振动对材料去除率和表面质量的影响不大.

本文引用格式

翟文杰,杨德重,宫娜 . 超声振动条件下碳化硅抛光过程的分子动力学模拟[J]. 上海交通大学学报, 2018 , 52(5) : 599 -603 . DOI: 10.16183/j.cnki.jsjtu.2018.05.015

Abstract

To deeply understand the material removal mechanisms at the atomic level in the process of chemical mechanical polishing (CMP) of silicon carbide (SiC) under ultrasonic vibration conditions, molecular dynamics (MD) method was employed to establish an atomic model of SiC scratched by a diamond abrasive, and the crystal structure, temperature, normal and tangential forces of SiC during the scratching process were investigated. The effects of ultrasonic vibration frequency on the scratched surface quality and material removal rate of SiC in the scratching process were also analyzed. Simulation results indicate that during the cutting process, amorphization appears in the local area of processed SiC surface. The introduction of ultrasonic vibration to the SiC scratching process can alleviate the average tangential force and the average normal force of the imposed abrasive, which is beneficial to the scratching process and the improvement of scratched surface quality. For the given simulation parameters, the best ultrasonic vibration frequency which can lead to a better polished surface quality and higher material removal rate is 80GHz, above which the surface quality and material removal rate are less affected by the ultrasonic vibration.

参考文献

[1]AIDA H, DOI T, TAKEDA H, et al. Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials [J]. Current Applied Phy-sics, 2012, 12(9): 541-546. [2]XU W H, LU X C, PAN G S, et al. Ultrasonic fle-xural vibration assisted chemical mechanical polishing for sapphire substrate [J]. Applied Surface Science, 2010, 256(12): 3936-3940. [3]GOEL S, LUO X C, REUBEN R L, et al. Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting[J]. Nanoscale Research Letters, 2011, 6(1): 589-597. [4]GOEL S, LUO X, REUBEN R L. Molecular dyna-mics simulation model for the quantitative assessment of tool wear during single point diamond turning of cubic silicon carbide[J]. Computational Materials Science, 2011, 51(1): 402-408. [5]SHIMIZU J, ZHOU L B, EDA H. Molecular dynamics simulation of vibration-assisted cutting: Influences of vibration, acceleration and velocity [J]. International Journal of Nanomanufacturing, 2006, 1(1): 105-116. [6]ZHU B, ZHAO H, ZHAO D, et al. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation[J]. AIP Advances, 2016, 6(3): 153. [7] LIANG Y C, LI D G, BAI Q S, et al. Molecular dynamics simulation of elliptical vibration cutting[C]∥1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. Zhuhai, China: IEEE, 2006: 635-638. [8]HUANG S, LIU X, CHEN F Z, et al. Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration [J]. International Journal of Advanced Manufacturing Technology, 2016, 85 (1/2/3/4): 673-681. [9]梁迎春, 陈家轩, 郭永博. 微纳米加工仿真技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2013: 50-56. LIANG Yingchun, CHEN Jiaxuan, GUO Yongbo. Technology on simulation of micro-nano-machining[M]. Harbin: Publishing House of Harbin Institute of Technology, 2013: 50-56.
Options
文章导航

/