学报(中文)

考虑粗糙峰弹塑性变形和润滑油性质的有限长线接触副混合润滑模型

展开
  • 上海大学 机电工程与自动化学院, 上海 200072

网络出版日期: 2018-05-28

基金资助

国家“十二五”重点科研项目上海大学子课题(D50-0109-12-001),科研培育计划项目(D72-0109-00-046)

A Mixed EHL Model of Finite-Length Line Contact Considering Asperity Elasto-Plastic Deformation and the Lubricant Properties

Expand
  • School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China

Online published: 2018-05-28

摘要

基于载荷分享机制和考虑粗糙表面接触变形的统计学模型,建立了耦合粗糙峰接触弹塑性变形与边界膜摩擦化学效应的有限长线接触热弹流混合润滑模型,通过与无限长线接触混合润滑模型的分析结果、有限长线接触光弹流润滑实验以及双圆盘实验结果的对比,验证了所建模型的可靠性,并探讨了表面粗糙度和润滑油性质对接触副润滑性能的影响.结果表明,降低表面粗糙度可以改善润滑状态,从而提高有限长线接触副的极限承载力.

本文引用格式

王志坚,陈晓阳,沈雪瑾 . 考虑粗糙峰弹塑性变形和润滑油性质的有限长线接触副混合润滑模型[J]. 上海交通大学学报, 2018 , 52(5) : 525 -532 . DOI: 10.16183/j.cnki.jsjtu.2018.05.004

Abstract

The thermal mixed lubrication model of finite-length line contacts is established, which takes account of the elasto-plastic deformation of the asperities and boundary-film tribo-chemistry properties.The model is verified by comparing the infinite-length theoretical model, the elastohydrodynamic lubrication (EHL) test rig and double-disk experimental data.Then the effect of surface roughness and the lubricant properties on the lubrication and friction are preliminarily discussed. The results show that reducing the surfuce roughness can effectively improve the scuffing resistance under the current operating conditions.

参考文献

[1]JOHNSON K L, GREENWOOD J A, POON S Y. A simple theory of asperity contact in elasto-hydrodynamic lubrication[J]. Wear, 1972, 19(1): 91-108. [2]GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society A, 1966, 295(1442): 300-319. [3]PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology, 1978, 100(1): 12-17. [4]ZHAO Y, MAIETTA D M, CHANG L. An asperity micro-contact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology, 2000, 122(1): 86-93. [5]MASJEDI M, KHONSARI M M. Film thickness and asperity load formulas for line-contact elasto-hydrodynamic lubrication with provision for surface roughness[J]. Journal of Tribology, 2012, 134(1): 011503-1-10. [6]BOWDEN F P, TABOR D, PALMER F. The friction and lubrication of solids[M]. Oxford: Clarendon Press, 1954. [7]ROELANDS C J A. Correlation aspects of the viscosity-temperature-pressure relationship of lubricating oils[D]. Delft, Netherlands: Technische Hogeschool Delft, 1966. [8]DOWSON D, HIGGINSON G R. Elasto-hydrodynamic lubrication[M]. Oxford: Pergamon Press, 1977. [9]MCCOOL J I. Relating profile instrument measurements to the functional performance of rough surfaces[J]. Journal of Tribology, 1987, 109(2): 264-270. [10]HIRST W, HOLLANDER A E. Surface finish and damage in sliding[J]. Proceedings of the Royal Society A, 1974, 337(1610): 379-394. [11]CHANG L, JENG Y R. A mathematical model for the mixed lubrication of non-conformable contacts with asperity friction, plastic deformation, flash temperature, and tribo-chemistry[J]. Journal of Tribology, 2014, 136(2): 022301-1-9. [12]TIAN X F, KENNEDY F E. Maximum and average flash temperatures in sliding contacts[J]. Journal of Tribology, 1994, 116(1): 167-174. [13]CHIPPA S P, SARANGI M. Study of surface roughness effects in elastohydrodynamic lubrication of a finite line contact using probabilistic model[C]∥Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms. Roorkee, India: Indian Institute of Technology, 2013: 857-863. [14]JACKSON A, WEBSTER M N, ENTHOVEN J C. The effect of lubricant traction on scuffing[J]. Tribology Transactions, 1994, 37(2): 387-395.
Options
文章导航

/