研究了宏观负泊松比效应蜂窝夹芯结构胞元壁厚、胞元层数和胞元泊松比等参数对弹体侵彻及水下抗爆等防护性能的影响.模拟弹体在空气中对宏观负泊松比蜂窝夹芯舰船防护结构的侵入和穿透过程,以及蜂窝夹芯防护结构在水下爆炸冲击载荷作用下的破坏形式.计算结果表明:单纯依靠结构性的被动防御无法应对高速或超高速弹体的侵彻问题;负泊松比效应蜂窝夹芯防护结构较传统防护结构具有良好的水下抗爆性能,且其水下抗爆性能随蜂窝胞元层数和胞元泊松比的增大而增强.
Effects of different design parameters on auxetic cellular sandwich defensive structure, like thickness, size and Poisson’s ratio of the honeycombs are studied. The process of a missile impinging on, and penetrating auxetic cellular sandwich structure and the failure mode of the structure under underwater explosion shock are simulated by nonlinear finite element software. Numerical results indicate that structural passive defense has been unable to deal with high speed projectiles. Compared with traditional defensive structures, the auxetic cellular sandwich defensive structure has better anti-shock performance, which will be enhanced by increasing the layers and Poisson’s ratio of the honeycombs. The structure is more suitable for underwater explosion protection.
[1]郭绍静. 新型舷侧水下及水上防护结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学船舶工程学院, 2010.
[2]黄超, 姚熊亮, 张阿漫. 钢夹层板近场水下爆炸抗爆分析及其在舰船抗爆防护中的应用[J]. 振动与冲击, 2010, 29(9): 73-76.
HUANG Chao, YAO Xiongliang, ZHANG Aman. Analysis on blast-resistance of steel sandwich plate under proximity underwater explosion loading and its application in ship protection[J]. Journal of Vibration and Shock, 2010, 29(9): 73-76.
[3]WIERNICKI C J, LIEM F, WOODS G D, et al. Structural-analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads[J]. Naval Engineers Journal, 1991, 103(3): 192-203.
[4]任鹏, 张伟, 刘建华. 铝合金格栅夹层结构水下抗冲击特性的实验研究[J]. 爆炸与冲击, 2016, 36(1): 101-106.
REN Peng, ZHANG Wei, LIU Jianhua. Experimental research on shock resistant properties of aluminum alloy lattice core sandwich panels under underwater shock loading[J]. Explosion and Shock Waves, 2016, 36(1): 101-106.
[5]于辉, 白兆宏, 姚熊亮. 蜂窝夹层板的优化设计分析[J]. 中国舰船研究, 2012, 7(2): 60-64.
YU Hui, BAI Zhaohong, YAO Xiongliang. The optimization design and analysis of honeycomb sandwich panel[J]. Chinese Journal of Ship Research, 2012, 7(2): 60-64.
[6]MCSHANE G J, DESHPANDE V S, FLECK N A. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores[J]. Journal of Applied Mechanics-Transactions of the Asme, 2007, 72(2): 352-364.
[7]ZHANG X W, YANG D Q. Numerical and experimental studies of a light-weight auxetic cellular vibration isolation base[J]. Shock and Vibration, 2016(9): 1-16.
[8]SPAGNOLI A, BRIGHENTI R, LANFRANCHI M, et al. On the auxetic behaviour of metamaterials with re-entrant cell structures[J]. Procedia Engineering, 2015, 109: 410-417.
[9]杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构[J]. 爆炸与冲击, 2015, 35(2): 243-248.
YANG Deqing, MA Tao, ZHANG Genglin. A novel auxetic broadside defensive structure for naval ships[J]. Explosion and Shock Waves, 2015, 35(2): 243-248.
[10]方岱宁, 张一慧, 崔晓东. 轻质点阵材料力学与多功能设计[M]. 北京: 科学出版社, 2009.
[11]TENG X, DEY S, BORVIK T, et al. Protection performance of double-layered metal shields against projectile impact[J]. Journal of Mechanics of Materials and Structures, 2007, 2(7): 1309-1330.
[12]DURMUS A, GUDEN M, GULCIMEN B, et al. Experimental investigations on the ballistic impact performances of cold rolled sheet metals[J]. Materials and Design, 2011, 32(3): 1356-1366.
[13]GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. London: Pergamon Press, 1988.